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References
• https://www.geeksforgeeks.org/k-nearest-neighbours/

• https://www.youtube.com/watch?v=pR-Of1ua6Dc
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•There are two main methods that are commonly
used to split the data:

a) Gini impurity and 

b) entropy information gain.
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Age Education Marital status Race Sex Hours Per Week Label

61 master maried White Male 40 <=50k

48 PhD divorse White Female 16 <=50

55 PhD married Black Male 45 >50 k

30 master Never married Black Female 50 >50 k

Example of Desision Tree-
visual representation Target variable

Which of these columns(features) best splits these labels into the largest purest buckets? 

Feature x
No Yes

<=50k

>50 k

We have two rows
less that 50k and 
two more than 50k
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Age Education Marital status Race Sex Hours Per Week Label

61 master maried White Male 40 <=50k

48 PhD divorse White Female 16 <=50k

55 PhD married Black Male 45 >50 k

30 master Never married Black Female 50 >50 k

Example of Desision Tree-
visual representation Target variable

Race is a best one

Age>=50
No Yes

Education=PhD

100% pure

Marital status=married
YesNo No Yes

Race=Black



Gini impurity
• The probability that decision tree made a mistake.

• High Gini ipmurity is bad
• Low Gini impurity is good

• The algorithm goes to check a features one by one (like we just
saw),  and it calculates this gini impurity score for each one of the 
features.

• One that it picks is the one with the best that is the lowest gini
impurity score.

• Gini consider bothe the purity and the weight of the leaves.
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Not much
weight

We have much
weight.



Binning
• We need to convert the numeric feature into multiple classes (like age>50)
• Finding a cut off (finding the rule for a numeric column is a non-trivial task )
• We are going to create a rule (hypothetical decision)
• How does efficiently the algorithm find these thresholds for the rules

-age <30 or age>50 or ……

It finds split point
It takes a copy of that numeric data and then it sorts it(ascending

order)
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Binning example

30      48      55       61 

Age Education Marital status Race Sex Hours Per Week Label

61 master maried White Male 40 <=50k

48 PhD divorse White Female 16 <=50

55 PhD married Black Male 45 >50 k

30 master Never married Black Female 50 >50 k

We are going to find the split points : 
A bench of split points are calculated based on the differences between these numbers

What is the spilt point? The midpoint between adjacent values.

39
<40

58
<59

51.5
<52
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• Which one has the best overall gini impurity score?
Age Education Marital status Race Sex Hours Per Week Label

61 master maried White Male 40 <=50k

48 PhD divorse White Female 16 <=50

55 PhD married Black Male 45 >50 k

30 master Never married Black Female 50 >50 k

Age<40
No

Age<52
No

Age<59
Noyes yes yes

Binning example
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• Which one has the best overall gini impurity score?
Age Education Marital status Race Sex Hours Per Week Label

61 master maried White Male 40 <=50k

48 PhD divorse White Female 16 <=50

55 PhD married Black Male 45 >50 k

30 master Never married Black Female 50 >50 k

Age<40
No

Age<52
No

Age<59
Noyes yes yes

Binning example

10



• Which one has the best overall gini impurity score?
Age Education Marital status Race Sex Hours Per Week Label

61 master maried White Male 40 <=50k

48 PhD divorse White Female 16 <=50

55 PhD married Black Male 45 >50 k

30 master Never married Black Female 50 >50 k

Age<40
No

Age<52
No

Age<59
Noyes yes yes
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• Which one has the best overall gini impurity score?

Age<40
No

Age<52
No

Age<59
Noyes yes yes

Not good  50/50

100% 
The first best one is

chosen

Age<40
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Race=black

Age Education Marital status Race Sex Hours Per Week Label

55 PhD married Black Male 45 >50 k

30 master Never married Black Female 50 >50 k

50 master married Black Female 55 <=50

Age Education Marital 
status

Race Sex Hours Per 
Week

Label

61 master maried White Male 40 <=50k

48 PhD divorse White Female 16 <=50

100% pure

Imagine we have many rows (records) in our dataset.

… …
Because we have all the 

same label value, it is
pure

yes no
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Race=black

Age Education Marital status Race Sex Hours Per Week Label

55 PhD married Black Male 45 >50 k

30 master Never married Black Female 50 >50 k

50 master married Black Female 55 <=50K

<=50K

A Leaf node
With a prediction

label

Left side: we do not have purity
So, the algorithm try to split it again

yes no
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Race=black

Age Education Marital status Race Sex Hours Per Week Label

55 PhD married Black Male 45 >50 k

30 master Never married Black Female 50 >50 k

50 master married Black Female 55 <=50K

<=50K

A Leaf node
With a prediction

label

yes no

• But all the values in the Race column are the same.
• The algorithm masks them since they have no useful information.
• The algorithm starts to find the best column for the next condition.
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Race=black

Age Education Marital status Race Sex Hours Per Week Label

30 master Never married Black Female 50 >50 k

<=50K

yes no

Age <40
yes

The tree Greedily opts
to split the rest of 

records based on Age
column. (it is the first 
optimal feature found
after than is hours per 

week feature)
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Race=black

<=50K

yes no

Age <40

Age Education Marital status Race Sex Hours Per Week Label

55 PhD married Black Male 45 >50 k

50 master married Black Female 55 <=50K

noyes

>50K
We should
continue
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Race=black

<=50K

yes no

Age <40

Age Education Marital status Race Sex Hours Per Week Label

55 PhD married Black Male 45 >50 k

50 master married Black Female 55 <=50K

noyes

>50K

When the tree is
complete, you can 

use it for prediction
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When the algorithm stop to split 
• When the node is 100% pure.
• Based on Hyperparameters

• You can set the thresholds for such things qs:
• The max dept of the tree
• The min number of record that fall into a leaf node
• ….

A hyperparameter, on the other hand, is a variable that is set 
before the training process begins.

Hyperparameters are not learned from the data but are instead set 

by the user or determined through a process known as 

hyperparameter optimization.
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Arbres de décision
• Les arbres de décision sont utilisables pour faire de la régression. 

Au lieu d’associer une classe à chaque feuille, c’est la valeur 
moyenne de la variable cible des éléments dans cette feuille qui 
sera utilisée.

• En scikit-learn, la classe à utiliser est un DecisionTreeRegressor.
from sklearn.tree import DecisionTreeRegressor

regressor = DecisionTreeRegressor(max_depth=2)

regressor.fit(X, y)

y_pred = regressor.predict(X_test) 20



Supervised learning- Decision tree(2)
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What is Classification in Machine Learning?
• Classification is a supervised machine learning method where the model 

tries to predict the correct label of a given input data.

• In classification, the model is fully trained using the training data, and then
it is evaluated on test data before being used to perform prediction on new 
unseen data.

22https://www.datacamp.com/blog/classification-machine-learning



• A classifier can be viewed as a function of block. 
• A classifier assigns one class to each point of the input space.
• The input space is thus partitioned into disjoint subsets, called decision 

regions, each associated with a class.

Input Vector 

(Feature) Classifier
Output 

(Class)

Classification: Terminology
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• The way a classifier classifies inputs is defined by its decision regions. 
• The borderlines between decision regions are called decision-region 

boundaries or simply decision boundaries.

Input dimension #2
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Decision regions

Decision boundaries

Inputs of class A

Inputs of class B

Classification: Terminology (cont.)
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