

Supervised learning- Decision tree(2)

Parcours Progis

Etudes, Medias, communication, Marketing
Bahareh Afshinpour.
02.12.2024

References

• https://www.geeksforgeeks.org/k-nearest-neighbours/

https://www.youtube.com/watch?v=pR-Of1ua6Dc

- There are two main methods that are commonly used to split the data:
 - a) Gini impurity and
 - b) entropy information gain.

Example of Desision Tree- visual representation

Target variable

Age	Education	Marital status	Race	Sex	Hours Per Week	Label
61	master	maried	White	Male	40	<=50k
48	PhD	divorse	White	Female	16	<=50
55	PhD	married	Black	Male	45	>50 k
30	master	Never married	Black	Female	50	>50 k

Which of these columns(features) best splits these labels into the largest purest buckets?

We have two rows less that 50k and two more than 50k

Example of Desision Tree- visual representation

Target variable

Age	Education	Marital status	Race	Sex	Hours Per Week	Label
61	master	maried	White	Male	40	<=50k
48	PhD	divorse	White	Female	16	<=50k
55	PhD	married	Black	Male	45	>50 k
30	master	Never married	Black	Female	50	>50 k

Race is a best one 100% pure

Gini impurity

- The probability that decision tree made a mistake.
 - High Gini ipmurity is bad
 - Low Gini impurity is good
- The algorithm goes to check a features one by one (like we just saw), and it calculates this gini impurity score for each one of the features.
- One that it picks is the one with the best that is the **lowest** gini impurity score.
- Gini consider bothe the purity and the weight of the leaves.

We have much weight.

Binning

- We need to convert the numeric feature into multiple classes (like age>50)
- Finding a cut off (finding the rule for a numeric column is a non-trivial task)
- We are going to create a rule (hypothetical decision)
- How does efficiently the algorithm find these thresholds for the rules
 -age <30 or age>50 or
- ✓ It finds split point
- ✓ It takes a copy of that numeric data and then it sorts it(ascending order)

Binning example

Age	Education	Marital status	Race	Sex	Hours Per Week	Label
61	master	maried	White	Male	40	<=50k
48	PhD	divorse	White	Female	16	<=50
55	PhD	married	Black	Male	45	>50 k
30	master	Never married	Black	Female	50	>50 k

We are going to find the split points:

A bench of split points are calculated based on the differences between these numbers What is the spilt point? The midpoint between adjacent values.

Binning example

• Which one has the best overall gini impurity score?

Age	Education	Marital status	Race	Sex	Hours Per Week	Label	
61	master	maried	White	Male	40	<=50k	
48	PhD	divorse	White	Female	16	<=50	
55	PhD	married	Black	Male	45	>50 k	
30	master	Never married	Black	Female	50	>50 k	

Binning example

• Which one has the best overall gini impurity score?

Age	Education	Marital status	Race	Sex	Hours Per Week	Label	
61	master	maried	White	Male	40	<=50k	
48	PhD	divorse	White	Female	16	<=50	
55	PhD	married	Black	Male	45	>50 k	
30	master	Never married	Black	Female	50	>50 k	

• Which one has the best overall gini impurity score?

Age	Education	Marital status	Race	Sex	Hours Per Week	Label	
61	master	maried	White	Male	40	<=50k	
48	PhD	divorse	White	Female	16	<=50	
55	PhD	married	Black	Male	45	>50 k	(
30	master	Never married	Black	Female	50	>50 k	

• Which one has the best overall gini impurity score?

Age<40

Imagine we have many rows (records) in our dataset.

Because we have all the same label value, it is pure 13

So, the algorithm try to split it again

With a prediction label

- But all the values in the Race column are the same.
- The algorithm masks them since they have no useful information.
- The algorithm starts to find the best column for the next condition.

A Leaf node With a prediction label

We should continue

When the algorithm stop to split

- When the node is 100% pure.
- Based on Hyperparameters
 - You can set the thresholds for such things qs:
 - The max dept of the tree
 - The min number of record that fall into a leaf node
 - •

A **hyperparameter**, on the other hand, is a variable that is set before the training process begins.

Hyperparameters are not learned from the data but are instead set by the user or determined through a process known as hyperparameter optimization.

Arbres de décision

 Les arbres de décision sont utilisables pour faire de la régression.
 Au lieu d'associer une classe à chaque feuille, c'est la valeur moyenne de la variable cible des éléments dans cette feuille qui sera utilisée.

• En scikit-learn, la classe à utiliser est un DecisionTreeRegressor.

```
from sklearn.tree import DecisionTreeRegressor

regressor = DecisionTreeRegressor(max_depth=2)

regressor.fit(X, y)

y_pred = regressor.predict(X_test)
```

Supervised learning- Decision tree(2)

https://www.javatpoint.com/regression-vs-classification-in-machine-learning

What is Classification in Machine Learning?

 Classification is a supervised machine learning method where the model tries to predict the correct label of a given input data.

• In classification, the model is fully trained using the training data, and then it is evaluated on test data before being used to perform prediction on new

unseen data.

Classification: Terminology

- A classifier can be viewed as a function of block.
- A classifier assigns one class to each point of the input space.
- The input space is thus partitioned into disjoint subsets, called *decision* regions, each associated with a class.

Classification: Terminology (cont.)

- The way a classifier classifies inputs is defined by its decision regions.
- The borderlines between decision regions are called *decision-region* boundaries or simply *decision boundaries*.