Chapter 4

High-Level Database
Models

Université Grenoble Alpes
21/02/2023

Bahareh Afshinpour

; . bahareh.afshinpour@univ-grenoble-alpes.fr
U C_ A I\/Ial.n reference_. | |
tal \ A First Course in Database Systems (and associated material) by
Crenatloalpes J- Ullman and J. Widom, Prentice-Hall

Representing Keys in the E/R Model

ovi

= -~

Exercise 4.1.9: Design a database suitable for a university registrar. This
database should include information about students, departments, professors,
courses, which students are enrolled in which courses, which professors are
teaching which courses, student grades, TA’s for a course (TA’s are students),
which courses a department offers, and any other information you deem appro-
priate. Note that this question is more free-form than the questions above, and
you necd to make some decisions about multiplicities of relationships, appro-
priate types, and even what information needs to be represented.

COURSE

M N
fIAGE:.
N

1
-~
Teaches L
M

%

LECTURER _ID
M

LECTURER Teaches

SUBJECTS

ECTURER ID) (LECTURER NAME) { COURSE_ID

!

SUBJECT_ID

4.1.12 Exercises for Section 4.1

Exercise 4.1.1: Design a database for a bank, including information about
customers and their accounts. Information about a customer includes their
name, address, phone, and Social Security number. Accounts have numbers,
types (e.g., savings, checking) and balances. Also record the customer(s) who
own an account. Draw the E/R diagram for this database. Be sure to include
arrows where appropriate, to indicate the multiplicity of a relationship.

Exercise 4.1.2: Modify your solution to Exercise 4.1.1 as follows:

Exercise 4.1.3: Give an E/R diagram for a database recording information
about teams, players, and their fans, including;:

1. For each team, its name, its players, its team captain (one of its players),
and the colors of its uniform:.

2. For each player, his/her name.

3. For each fan, his/her name, favorite teams, favorite players, and favorite
color.

Remember that a set of colors is not a suitable attribute type for teams. How
can you get around this restriction?

Exercise 4.1.5: Modify Exercise 4.1.3 to record for each player the history of
teams on which they have played, including the start date and ending date (if
they were traded) for each such team.

Design Principles

* Faithfulness
» Entity sets and their attributes should reflect reality.

Example 4.12: If we define a relationship Stars-in between Stars and Mouvies,
it should be a many-many relationship. The reason is that an observation of the
real world tells us that stars can appear in more than one movie, and movies
can have more than one star. It is incorrect to declare the relationship Stars-in
to be many-one in either direction or to be one-one. O

Example 4.13: On the other hand, sometimes it is less obvious what the
real world requires us to do in our E/R design. Consider, for instance, entity
sets Courses and Instructors, with a relationship Teaches between them. Is
Teaches many-one from Courses to Instructors? The answer lies in the policy
and intentions of the organization creating the database. It is possible that
the school has a policy that there can be only one instructor for any course.
Even if several instructors may “team-teach” a course, the school may require
that exactly one of them be listed in the database as the instructor responsible
for the course. In either of these cases, we would make Teaches a many-one
relationship from Courses to Instructors.

* Avoiding Redundancy

»We should be careful to say everything once only.
* Need extra space
e Update-anomaly may happen(ex: change relationship but not attribute)

* Choosing the Right Relationships
» Adding to our design every possible relationship is not often a good idea.

» It can lead to redundancy, update anomalies, and deletion anomalies,
where the connected pairs or sets of entities for one relationship can be
deduced from one or more other relationships.

In summary, we cannot tell you whether a given relationship will be redun-
dant. You must find out from those who wish the database implemented what
to expect.

* Simplicity counts

» Avoid introducing more elements into your design than is absolutely
necessary.

* Picking the Right kind of element

»In general, an attribute is simpler to implement than either an entity set or a
relationship.

»However, making everything an attribute will usually get us into trouble.

Example

Example 4.17: Let us consider a specific problem. In Fig. 4.2, were we wise
to make studios an entity set? Should we instead have made the name and
address of the studio be attributes of movies and eliminated the Studio entity
set? One problem with doing so is that we repeat the address of the studio for
each movie. We can also have an update anomaly if we change the address for
one movie but not another with the same studio, and we can have a deletion
anomaly if we delete the last movie owned by a given studio.

On the other hand, if we did not record addresses of studios, then there
is no harm in making the studio name an attribute of movies. We have no
anomalies in this case. Saying the name of a studio for each movie is not true
redundancy, since we must represent the owner of each movie somehow, and
saying the name of the studio is a reasonable way to do so. O

10

Weak entity

 Weak Entities

* A weak entity is an entity that

* |s existence-dependent and
* Has a primary key that is partially or totally derived from the parent entity in the relationship.

* The existence of a weak entity is indicated by a double rectangle.

* The weak entity inherits all or part of its primary key from its strong counterpart.

1 M
EMPLOYEE —‘—M) DEPENDENT Weak Entity
N 1,1 —
EMP_NUM 10 i EMP_NUM Customer
EMP_LNAME EMP_NUM
EMP_FNAME DEP_FNAME
EMP_INITIAL DEP_DOB

EMP_DOB

Strong Entity
11

Example 4.20: A movie studio might have several film crews. The crews
might be designated by a given studio as crew 1, crew 2, and so on. However,
other studios might use the same designations for crews, so the attribute number
is not a key for crews. Rather, to name a crew uniquely, we need to give
both the name of the studio to which it belongs and the number of the crew.
The situation is suggested by Fig. 4.20. The double-rectangle indicates a weak
entity set, and the double-diamond indicates a many-one relationship that helps
provide the key for the weak entity set. The notation will be explained further
in Section 4.4.3. The key for weak entity set Crews is its own number attribute
and the name attribute of the unique studio to which the crew is related by the
many-one Unit-of relationship. O

CRumber S CerewChief (rame ™ Caddr)
=== =7

Figure 4.20: A weak entity set for crews, and its connections

Studios

LN

4.4.3 Weak Entity Set Notation

We shall adopt the following conventions to indicate that an entity set is weak
and to declare its key attributes.

1. If an entity set is weak, it will be shown as a rectangle with a double
border. Examples of this convention are Crews in Fig. 4.20 and Contracts
in Fig. 4.22.

2. Its supporting many-one relationships will be shown as diamonds with a
double border. Examples of this convention are Unit-of in Fig. 4.20 and
all three relationships in Fig. 4.22.

3. If an entity set supplies any attributes for its own key, then those at-
tributes will be underlined. An example is in Fig. 4.20, where the number
of a crew participates in its own key, although it is not the complete key
for Crews.

We can summarize these conventions with the following rule:

¢ Whenever we use an entity set £ with a double border, it is weak, The key
for E is whatever attributes of E are underlined plus the key attributes of
those entity sets to which E is connected by many-one relationships with
a double border.

From E/R diagrams to Relational designs

1.

Turn each entity set into a relation with the same set of attributes

Stars

name

address

Carrie Fisher
Mark Hamill
Harrison Ford

123 Maple St.,

Heollywood

456 0ak Rd., Brentwood

789 Palm Dr.,

Beverly Hills

14

From E/R diagrams to Relational designs

3. Strong entity set with composite attributes 0

* In the relational model, a strong entity set with

* During conversion, only the simple attributes of composite at

tributes are considered, not the composite attribute itself / ‘

Roll no | First_ name | Last name | House no | Street | City

Schema : Student (Roll no , First_name , Last_name , House_no , Street , City)

https://www.gatevidyalay.com/er-diagrams-to-tables/

From E/R diagrams to Relational designs

* 4. For Strong Entity Set With Multi-Valued Attributes

In relational model, a strong entity set with any number of !

multivalued attributes will require two tables. Student

Mobile_no

* All simple attributes will be stored in a single table with a
primary key. ‘

* Another table will contain the primary key and all attributes with

multiple values. Roll no | City

Roll no | Mohile no

16

Combining relations : one to many

Because R is many-one, all these attributes are functionally determined by the key for E,
and we can combine them into one relation with a schema consisting of:
‘ -No new table for relation
1. All attributes of E. - We modify many side(1 to many) table

- We add
- Attribute from relation(contracts)

- Primary key of 1 side

2. The key attributes of F'.

3. Any attributes belonging to relationship K.

Add to the relation

Movies: @

title year | length | genre studioName | s5jary T
Star Wars 1977 | 124 sciFi | Fox " ey @
Gone With the Wind { 1939 | 239 drama | MGM i i

Wayne’s World 1992 | 95 comedy | Paramount (ergt) - G 1

Studios

Here, two tables will be required : -studios - Movies .

Combining relations : one to one

(o Cmn >
1 1

Student Birth_Certificate
'/ i

Mother's_Name
Student_Contact Registered_Date

Here, two tables will be required. Either combine ‘R’ with ‘A’ or ‘B’

Way-01:
1.student (al, a2,a3, .., bl)

2.Birth (bL, b2, b3,...) There's no need for a new table. Only the primary key of

one entity should be added to another

Way-02:
1.student (al, a2, a3,)

2.Birth (a1, b1, b2, b3, ...)

18

Combining relations : many to many

* Here, three tables will be required:

v’ Student(al,a2,a3,....)
v Course(cl,c2,c3,...)

Create a new table for the relation

v Enrolled(al,cl,...)

Student

mn

Course

19

Weak entity

Weak entity set always appears in association with identifying relationship with total participation constraint.

* Create a new table
e Put the owner’s primary key in this table
 Combination of the owner and weak entity ‘s primary key is new primary key in this table

Here, two tables will be required-

1.A(al,a2)
2.BR(al,bl,b2)

20

Foreign key (Also known as FK)

This concept is used in relational databases for an attribute that is
the primary key of another table and is used to create a link between that table

and the table in which it also appears as an attribute.

e I TR

D intager(10)
= Name varchar(255) [{] wmm | pOT Hello World Tech. 534-55-7478
Contact varchari255) [}f]

m-02 ABC Technologies 283-92-8511

T

|

|

|

|

:
Product

C)
: |
D integer(10) PDT-0001 | M-01 1 Tiger T7 Bluetooth Headphones
™ ManufactureriD integer(10) mm I
[Z| Mame varchar(255)] PDT-0002 : M-01 | DD-027 In-Ear Headphones, Black
|
PDT-0003 : M-02 I M. 1022 Deep Bass Earbuds

https://www.visual-paradigm.com/guide/data-modeling/what-is-entity-relationship-diagram/

A foreign key is a reference to a
primary key in a table.

Note that foreign keys need not

be unique. Multiple records can
share the same values.

21

Unified modeling diagram

 Modeling: Describing a software system at a high level of abstraction
* UML offers much the same capabilities as the E/R model, with the exception of multiway relationships.

* Here you can see different terminology that is used by E/R and UML.

UML | E/R Model
Class Entity set
Association Binary relationship
Association Class | Attributes on a relationship
Subclass Isa hierarchy
Aggregation Many-one relationship
Composition Many-one relationship

with referential integrity

Figure 4.34: Comparison between UML and E/R terminology

22

Class diagram

» A class diagram depicts classes and their relationships

* Provide a conceptual model of the system in terms of entities and their relationships

Order

®dateRecived : Date
®isPrepaid : Boolean
&number : String

price : Money

Customer

Sdispatch()
®close()

&narne : String
Byaddress : String

SereditRating)

}

Corprate Customer

Personal Customer

®contactName : String
R creditRating : String
S creditLimit : Double

R creditCard# : Long Integer

Sremind()
®hillForonth()

23

UML Classes

Sets of objects, with attributes (state) and methods (behavior).

Each class is represented by a rectangle subdivided into three

compartments Movies
> Name title PK
> Attributes fmeK
. eng
» Operations genre

Attributes have types.

<place for methods>

PK indicates an attribute in the object’s primary key (optional).

Methods have declarations: arguments (if any) and return type. Figure 4.35: The Movies class in UML

Example 4.34: We might have added an instance method lengthInHours().
The UML specification doesn’t tell anything more about a method than the
types of any arguments and the type of its return-value. Perhaps this method
returns length/60.0, but we cannot know from the design. O

24

Associations

* A binary relationship between classes is called an association.
* No multiway relationship (it is broken into binary relationships)
* The association is a set of pairs of objects, one from each of the classes it connects.

Studios

name PK
address

0.*

Owns 0..1 Movies
title PK
year PK
length
genre

Stars
name PK
address

Figure 4.36: Movies, stars, and studios in UML

e If there is no label at all at an end of an association edge, then the label
is taken to be 1..1, i.e., “exactly one.”

Example

Example 4.36: In Fig. 4.36 we see 0..x at the Movies end of both associations.
That says that a star appears in zero Or more movies, and a studio owns zero
or more movies; i.e., there is no constraint for either. There is also a (.. at
the Stars end of association Stars-in, telling us that a movie has any number
of stars. However, the label on the Studios end of association Owns is 0..1,
which means either 0 or 1 studio. That is, a given movie can either be owned
by one studio, or not be owned by any studio in the database. Notice that this
constraint is exactly what is said by the pointed arrow entering Studios in the
a

E/R diagram of Fig. 4.17.

Movies

title PK
year PK
length
genre

1.

1

Studios

Owns

name PK
address

l..

1

0..1

Presidents

Runs

cert# PK
name
address

26

Self- Associations

An association can have both ends at the same class

Association - Self

Class Role
|
I : A Company has Employees.
Worker v v A single manager is responsible for up to 10 workers.
* Person 1 employer Company
Self Association =— —» employee .
Manager 1
0..1 Employee
Manages t manager
I Responsible 1o | worker
Multiplicity for :
\4

27

Subclasses in UML

* There are two kinds of Relationships

» Generalization (parent-child relationship)
» Association (student enrolls in the course)

e Associations can be further classified as
» Aggregation
» Composition

28

Subclasses in UML

e Subclasses are presented by rectangles, like any class.

* We assume a sub-class inherits the properties(attributes and
associations) from its superclass.

Bike

Car

+wheels
—gearShitt21

+wheels
~horsepower

+getSpead()
+changeBaraback()

+getSpeed()

Vehicle

Bike

#wheels
—gearShift21

+wheels
=horsepower

+oeiSpeead()
+changeBareback()

+getsSpeed()

29

