UGA

Universite
Grenoble Alpes

Database
Intro-DataBase

Université Grenoble Alpes

01.03.2023

bahareh.afshinpour@univ-grenoble-alpes.fr

Main reference:
A First Course in Database Systems (and associated material) by
J. Ullman and J. Widom, Prentice-Hall

Recall

* In practice, it is often easier to start with a higher-level model and
then convert the design to the relational model.

High-Level Relational Relational
DESlgl"l Schema DEMS

The database modeling and implementation process

* There are several options for the notation in which the design is
expressed.
* Entity-relationship diagram
 UML (class diagram)
* ODL(object description language)

Classes

A class is a description of a set of objects that share the same
ClassName attributes, operations, relationships, and semantics.
attributes
operations
FEIBET Attributes can be:
name :String ; pr:tlclaccted
address : String p-
- private

birthdate : Date
ssn : integer

Class Operations

student

newEntry (n : Name, a : Address, p : PhoneNumber, d : Description)

Operations describe the class behavior
and appear in the third compartment.

You can specify an operation by stating its signature: listing the name, type, and default
value of all parameters, and, in the case of functions, a return type.

Association Relationships

Associations can also be objects themselves, called link classes or an association classes.

Registration

modelNumber
serialNumber
warrentyCode

Product - Warranty

Subclasses in UML

e Subclasses are presented by rectangles, like any class.

* We assume a sub-class inherits the properties(attributes and
associations) from its superclass.

Bike

Car

+wheels
—gearShitt21

+wheels
~horsepower

+getSpead()
+changeBaraback()

+getSpeed()

Vehicle

Bike

#wheels
—gearShift21

+wheels
=horsepower

+oeiSpeead()
+changeBareback()

+getsSpeed()

Subclasses in UML

Person

-name: String
-age: String

+addlLegoStructure(ls: LegoStructure)

A horizontal line, feeding into the arrow

Super-class

{disjoint, Complete}

Person

Name
Phone Number
Email Address

Purchase Parking Pass

i

Student

Professor

- Child

=

Adult

Student Number

Salary

Average Mark

+buildHouse(lego: LegaSet)

+buildDragon{lego: LegoSet)

Sub-class may have its own attributes and additional, association

Sub-class

Is Eligible To Enroll
Get Seminars Taken

Name — Order

-dateReceived Multiplicity: mandatory

Attributes -isPrepaid " Customer
-number :String
-price : Money

-name
-address

Operations — +T§E)Zt:80 Association +creditRating() : String()

{if Order.customer.creditRating is Generalization
"poor", then Order.isPrepaid must
be true }

Corporate Customer Personal Customer
¥ -contactName -creditCard#
Constraint -creditRating

-creditLimit

Multiplicity: (inside braces{}} S———
WERVAZEING +billForMonth(Integer)
e 814 0..
Multiplicity:

optional *

Employee
OrderLine
-quantity: Integer 1 Product
-price: Money

-isSatisfied: Boolean

Aggregations

Container Class

e expresses a relationship among instances
of related classes. It is a specific kind of §>

. . . . AGGREGATION
Container-Containee relationship. ‘

Class C

Class E, Class E,

N\ J
Y

Containee Classes

Example Bag

‘ %

Apples Milk

[From Dr.David A. Workman]

Composition

However, it is also possible in UML,

Stronger relationSh I p to use composition as we used supporting
One can not exist without the other relationships for weak entity sets in the E/R

model.
If the school folds, students live on
but the departments go away with the school
School @ Department Chesshoard Class Square Class
~ 7 1 1.%
1. Y | 64

Student

The McGraw-Hill Companies, 2005 Figure 16.7

Model aggregation or composition? When in doubt, use association (just a simple line)

10

12

From UML Diagram to Relations

 Class to relations
* For each class, create a relation whose name is the name of the class
 And whose attributes are the attributes of the class.

* Associations to Relations
* For each association, create a relation with the name of that association

* The attributes of the relation are the key attributes of the two connected
classes (Rename if necessary).

* If there is an association class attached to the association, include the
attributes of the association class among the attributes of the relation.

Example 4.42: Consider the UML diagram of Fig. 4.36. For the three classes
we create relations:

Movies(title, year, length genre)
Stars(name, address)
Studios(name, address)

For the two associations, we create relations
Stars-In(movieTitle, movieYear, starName) Stars-In{movieTitle, movieYear, starName, salary, residuals)
Owns{movieTitle, movieYear, studioName)

13

Examples

Crews 0.* 1.1 Studios
number PK PK name PK
crewChief address

* Box labeled “PK” indicates that this composition provides part of the key for crews.

* The relation for class crews includes not only its own attribute number, but the key
for class at the end of the composition, which is studios(name).

The relations for Example 4.44 are thus:

Studios(name, address)
Crews (number, crewChief, studioName)

As before, we renamed the #ttribute name of Studios in the Crews relation, [ur
clarity. 14

Converting sub-classes

Three approaches to convert entity sub-classes in relations

Subclass relations contain superclass key + specialized attrs. (“UML” style)

Subclass relations contain all attributes (“O0” Style)
One relation containing all superclass + subclass attrs.

Pros/cons depend on:
the frequent queries...
data characteristics
sub-classes type (complete/partial; disjoint/overlapping)

K{pk}

S1

S2

16

Converting entity sub-classes: “UML” style

. Create a relation for the “root” class (as usual)
 It's key k is the identifier of the class

. For each sub-class create a relation with the
key attributes (k) + its own specific attributes

S(K,A)

S1(K,B)

52(K,C)

K{pk}

S1

S2

17

Converting entity sub-types: “O0” style

 Create a relation for each class and for each sub-
class with all its attributes (own+inherited)
* The key is based on the identifier of the “root” entity
S(K,A) S1(K,A, B) S2(K,A,C)

K{pk}

S1

S2

18

Converting sub-classes: attributes and null values

 Create one single relation with all
the attributes of the class hierarchy
S(K,A, B, C)

e |nstances have null in attributes that
don’t belong to them

 Specific attributes can be used to
reflect sub-classes

A

K{pk}

S1

S2

Object Definition Language

 ODL is as a text-based language for specifying the structure of
databases in object-oriented terms.

 Like UML, the class is the central concept in ODL.

A declaration of a class in ODL, in its simplest form, is:

class <name> {
<list of properties>

|

20

Attributes in ODL

* In ODL, attributes need not be of simple types such as integers

* An attribute is represented in the declaration for its class by the
keyword attribute, the type, and the name of attribute.

class Movie {
attribute string title;
attribute integer year;
attribute integer length;
attribute enum Genres
{drama, comedy, sciFi, teenl} genre;

};

Here genres is enumerated type (list of symbolic constants).
The four values that genre is allowed to take are drama, comedy,

21

Attributes in ODL

* Atribute Address has a type that is a record structure

* The name of this structure is Addr. It consists of two fields: street and
city

class Star {
attribute string name;
attribute Struct Addr
{string street, string city} address;

22

Relationships in ODL

* An ODL relationship is declared inside a class declaration by the
keyword relationship, a type, and the name of the relationship.

* For example, the best way to represent the connection between the
Movie and Star classes is with a relationship.

e We add this line in the declaration of class Movie.

relationship Set<Star> stars;

23

Multiplicity of relationships

* If we have many-many relationships between classes Cand D
* Set<D>, Set <C>

* If the relationship is many-one from C to D,

* The type of the relationship in Cis just D
* while the type of the relationship in D is set<C>.

* If the relationship is one-one,
* the type of the relationship in Cis just D
e and in D it is just C.

24

1) class Movie {

2) attribute string title;
3) attribute integer year;
4) attribute integer length;
5) attribute enum Genres
{drama, comedy, sciFi, teen} genre;
6) relationship Set<Star> stars Many-many relationships between Star and movie
inverse Star::starredln;
7) relationship Studio ownedBy
inverse Studio::owns;
}; movie
8) class Star {
9) attribute string name; stars
10) attribute Struct Addr starredIr
{string street, string city} address;
11) relationship Set<Movie> starredIn Star
inverse Movie::stars;
};
12) class Studio {
13) attribute string name;
14) attribute Star::Addr address; Since the type of OwnedBy is Studio, while the type of owns
15) relationship Set<Movie> owns is Set<Movie>, we see that this pair od inverse relationship

inverse Movie::ownedBy; o any_one from Movie to studio.

};

25

Declaring Keys in ODL

* The declaration of a key or keys for a class is optional.
* ODL assumes that all objects have an object-identity

class Movie (key (title, year)) {

26

Subclasses in ODL

* Class C to be a subclass of another class D
* Follow the name Cin its declaration with the keyword extends and the name D

* Then class C inherits all the properties of D and may have additional properties
of its own.

class MurderMystery extends Movie {
attribute string weapomn;

};

27

From ODL Design to relational Design

* Page 193-196

Algebric and Logical query
Languages

Chapter 5

Programming

* We now switch our attention from modeling to programming for
relational databases.

* We have two abstract programming language
* Relational algebra(chapter 2)
* Logic-based

* We extend the algebra so it can handle several more operations than
were described previously.

30

Relational Algebra Operations

Chapter 2 presented the classical relational algebra.

* The usual set operations: union, intersection, difference

* Operations that remove parts of relations:
e selection, projection
e Operations that combine tuples from two relations:
 Cartesian product, join
* Since each operation returns a relation,
e operations can be composed!

31

Projection

* The Projection operator applied to a relation R, produces a new relation with a
subset of R’s columns.

title year | length | genre studioName | producerC#
Star Wars 1977 | 124 sciFi Fox 12345
Galaxy Quest 1999 | 104 comedy | DreamWorks | 67890
Wayne’s World | 1992 | 95 comedy | Paramount 99999

The relation Movies

Mtitle,year.length (MDV iEE) Mgenre (MDV ie E)
title year | length genre
Star Wars 1977 | 124 ~sciFi
Galaxy Quest 1999 | 104 comedy
Wayne’s World | 1992 | 95

Selection

* The selection operator applied to a relation R, produces a new
relation with a subset of R’s tuples.

* The tuples in the resulting relation are those that satisfy some
condition C that involves the attributes R.

title year | length | genre studioName | producerC#
Star Wars 1977 | 124 sciFi Fox 12345
Galaxy Quest 1999 | 104 comedy | DreamWorks | 67890
Wayne’s World | 1992 | 95 comedy | Paramount 99999
The relation Movies Tlength>100 (MDV ie E)
title year | length | wnColor | studioName | producerC#
Star Wars 1977 | 124 sciFi Fox 12345
Galaxy Quest | 1999 | 104 comedy | DreamWorks | 67890

Cartesian Product (cross-product)

* The Cartesian Product of two sets R and S is the set of pairs that can be formed by
choosing the first element from R and the second from S.

* If R and S have some attributes in common, we need to invent a new name for
the identical attributes.

Relation R X S
. Relation S A RB |SB |cC
Relation R 1 5 5 : :
B [C |D
A | B y B : - -
2 |5 |86
]2 1 2 9 10 1
4 |7 |8
3 |4 g p) -
9 10 | 11
s |4 9 10 |1

34

Bags

In this section, we shall consider relations that are bags (multisets) rather than

sets. That is, we shall allow the same tuple to appear more than once in a
relation. When relations are bags, there are changes that need to be made to

the definition of some relational operations, as we shall see.
5.1.1 Why Bags?

As we mentioned, commercial DBMS’s implement relations that are bags, rather

Chapter 5 introduced the

than sets. An important motivation for relations as bags is that some relational modifications necessa ry
operations are considerably more efficient if we use the bag model. For example: to treat relations as bags
1. To take the union of two relations as bags, we simply copy one relation of tup|es rather that sets.

and add to the copy all the tuples of the other relation. There is no
need to eliminate duplicate copies of a tuple that happens to be in both
relations.

2. When we project relation as sets, we need to compare each projected tuple
with all the other projected tuples, to make sure that each projection
appears only once. However, if we can accept a bag as the result, then
we simply project each tuple and add it to the result; no comparison with

: . 35
other projected tuples is necessary.

Union, Intersection, and Difference

e In the bag union R U S, tuple ¢ appears n + m times.
e In the bag intersection R N S, tuple ¢t appears min(n,m) times.

e In the bag difference R — S, tuple ¢ appears max(0,n — m) times. That
is, if tuple ¢t appears in R more times than it appears in .S, then ¢t appears
in R — S the number of times it appears in R, minus the number of times
it appears In S. However, if ¢ appears at least as many times in .S as
it appears in K, then t does not appear at all in B — 5. Intuitively,
occurrences of ¢t in S each “cancel” one occurrence in K.

36

Example

Example 5.4: Let R be the relation of Fig. 5.1, that is, a bag in which tuple:
(1,2) appears three times and (3,4) appears once. Let .S be the bag

R:
(1,2) 3times
(3,4) 1 time

c;nmml—-”;h
m-b-bw”tu

Then the bag union R U S is the bag in which (1,2) appears four times (three
times for its occurrences in R and once for its occurrence in S); (3,4) appears
three times, and (5, 6) appears once,

The bag intersection R N S is the bag A
1]
3

o m“m

with one occurrence each of (1,2) and (3,4). That is, (1,2) appears three times
in R and once in S, and min(3,1) = 1, so0 (1, 2) appearsoncein RN S. Similarly,
(3,4) appears min(1,2) = 1 time in RN S. Tuple (5,6), which appears once in
S but zero times in R appears min(0, 1) = 0 times in R N S. In this case, the
result happens to be a set, but any set is also a bag. 37

The bag difference R — S is the bag

A4
I
1

N MHQ,

To see why, notice that (1,2) appears three times in R and once in S , SO 1n
R ~ S it appears max(0,3 — 1) = 2 times. Tuple (3,4) appears once in R and
twice in S, so in R — S it appears max(0,1 — 2) = 0 times. No other tuple
appears in R, so there can be no other tuples in R — S.

Selection on Bags

* To apply a selection to a bag, we apply the selection condition to each
tuple independently. As always with bags, we do not eliminate
duplicate tuples in the result.

Example 5.5: If R is the bag

S

ol B e B
NP
«1-40101()

then the result of the bag-selection o¢o>6(R) is

A|B|C
3416

[y

N M

[y
~N

39

Products of Bags

The rule for the Cartesian product of bags is the expected one. Each tuple of
one relation is paired with each tuple of the other, regardless of whether it is a

duplicate or not. As a result, if a tuple r appears in a relation R m times, and
tuple s appears n times in relation .S, then in the product R x S, the tuple rs

will appear mn times.

40

Extended Operators of Relational Algebra

SQL have several other operations that have proved quite important in applications.

1-The duplicate-elimination operators

2-Aggregation operators such as SUM . They apply to attributes(columns) of a relation.

3-Grouping of tuples, can partition the tuples into group. Aggregation can then be applied to columns
within each group.

4- Extended projection gives additional power to the operation projection.

5-The sorting operator turns a relation into a list of tuples, sorted according to one or more attributes.

6-The outerjoin operator is a variant of the join that avoids dangling tuples.

41

Duplicate Elimination 4é(R)

* Sometimes we need an operator that converts a bag to a set.

Example 5.8: If R is the relation

I—ll-*(ﬂl-l“:]:_

from Fig. 5.1, then §(R) is

o H”;_.h

42

Aggregation operators (summarize)

* Many operators we can apply to set or bags of numbers or strings.

* They are used to summarize or aggregate the values in one column of relation

* For example:

 SUM

* AVG

* MIN and MAX (numerical values and character-string values)
* COUNT

43

Example

Example 5.9: Consider the relation

A

Mim

(SN = N I
[o T % Y =

Some examples of aggregations on the attributes of this relation are:

ok

. SUM(B) =2+4+2+ 2 =10.
2. AVG(A) = (1+3+1+1)/4=1.5.
3. MIN(A) =1,

e

. MAX(R) = 4.

5. COUNT(A) = 4.

