Chapter 3
Design theory for Relational
Databases

Université Grenoble Alpes
22/03/2023

Bahareh Afshinpour

bahareh.afshinpour@univ-grenoble-alpes.fr

U C_A Main reference:
A A First Course in Database Systems (and associated material) by

Université J. Ullman and J. Widom, Prentice-Hall
Grenoble Alpes

e lives(person-name,street,city)

Exa m p I es e works(person-name, company-name,salary)

e located-in(company-name,city)

e manages(person-name,manager-name)

For the above schema (the primary key for each relation is denoted by the underlined
attribute), provide relational algebra expressions for the following queries:

1. Find all tuples in works of all persons who work for the City Bank company (which is a
specific company in the database).

(&) J(cna*m.e:’(jity Bank') (’IUGTkS)

2. Find the name of persons working at City Bank who earn more than $50,000.

(EL) Tpname (J(cnwmez"{?ity Bank')A(salary>50000) (’LUOT k“i))

3. Find the name and city of all persons who work for City Bank and earn more than 50,000.
Similar to previous query, except we have to access the lives table to extract the city of the
employee . Note the join condition in the query.

(EL) Tlives.pname,lives.city (J((ename='Clity Bank")\(salary>50000)A(lives.pname=works.pname))) (l?;’UBS X ’.{UOT}'CS)

Find names of all persons who do not work for City Bank. Can write this in multiple ways
- one solution is to use set difference:

(EL) (ﬂ—pnwm.e ('LUDTkS)) - (anarne (Jcﬂarnezf(]ity Bank' (ﬂFO?"k“S)))

6. Find the name of all persons who work for City Bank and live in DC. Similar to query 3,
but select only with tuples where person city is DC.

(EL) Tlives.pname (J((ecname='C'ity Bank’)A(lives.city="DC’)A(lives.pname=works.pname))) (li‘:‘UES X ’UJD?"kS)

SQL - Structured Query Language

* The most commonly used relational DBMS’S query and modify the
database through a language called SQL.

* The portion of SQL that supports queries has capabilities very close to
relational algebra.

SQL - Structured Query Language

* Perhaps the simplest form of query in SQL asks for those tuples of some one
relation that satisfy a condition.

* This simple query, like almost all SQL queries, uses the three keywords. SELECT,
FROM, and WHERE that characterize SQL.

SELECT =
FROM Movies
WHERE studioName = ’Disney’ AND year = 1990;

A Trick for Reading and Writing Queries

It is generally easist to examine a select-from-where query by first looking
at the FROM clause, to learn which relations are involved in the query.
Then, move to the WHERE clause, to learn what it is about tuples that is
important to the query. Finally, look at the SELECT clause to see what
the output is. The same order — from, then where, then select — is often
useful when writing queries of your own, as well.

Projection in SQL

Example 6.2 : Suppose we wish to modify the query of Example 6.1 to produce
only the movie title and length. We may write

SELECT title, length
FROM Movies
WHERE studicName = ’'Disney’ AND year = 1990;

The result is a table with two columns, headed title and length. The tuples
in this table are pairs, each consisting of a movie title and its length, such that
the movie was produced by Disney in 1990. For instance, the relation schema
and one of its tuples looks like:

title length
Pretty Woman | 119

1Thus, the keyword SELECT in SQL actually corresponds most closely to the projection
operator of relational algebra, while the selection operator of the algebra corresponds to the
WHERE clause of SQL queries,

Projection in SQL

* Sometimes, we wish to produce a relation with column headers different from
the attributes of the relation mentioned in the From clause.

* We may follow the name of the attribute by the keyword AS and an alias, which
becomes the header in the result relation.

Example 6.3: We can modify Example 6.2 to produce a relation with at-
tributes name and duration in place of title and length as follows.

SELECT title AS name, length AS duration
FROM Movies
WHERE studioName = ’Disney’ AND year = 1990;

The result is the same set of tuples as in Example 6.2, but with the columns
headed by attributes name and duration. For example,

name duration
Pretty Woman | 119

Projection in SQL

* We can use an expression in place of an attribute.

Example 6.4: Suppose we want output asin Example 6.3, but with the length

in hours. We might replace the SELECT clause of that example with * Lengths would
be calculated in
SELECT title AS name, (length*0.016667 AS lengthInHours hours

~* Thenrename
Then the same maovies would be produced, but lengths would be calculated in

hours and the second column would be headed by attribute lengthInHours,
as:

name lengthInHours
Pretty Woman | 1.98334

Case Insensitivity

Case Insensitivity

SQL is case insensitive, meaning that it treats upper- and lower-case let-
ters as the same letter. For example, although we have chosen to write
keywords like FROM in capitals, it is equally proper to write this keyword
as From or from, or even FrOm. Names of attributes, relations, aliases, and
so on are similarly case insensitive. Only inside quotes does SQL make
a distinction between upper- and lower-case letters. Thus, *FROM’ and
'from’ are different character strings. Of course, neither is the keyword
FROM.

Selection

* WHERE clause <attribute> <operator> <value>

* We may build expressions by comparing values using the six common
comparison operators: =, <>, >, <, <=, >=
Not equal

vol.depart = "Londres"
avion.cap < '300"
avion.type = '"AIRBUS 300"

Selection

SQL Queries and Relational Algebra

The simple SQL queries that we have seen so far all have the form:

SELECT L
FROM R
WHERE C

in which L is a list of expressions, R is a relation, and C is a condition.
The meaning of any such expression is the same as that of the relational-
algebra expression

7L (oc(R))

That is, we start with the relation in the FROM clause, apply to each tuple
whatever condition is indicated in the WHERE clause, and then project onto
the list of attributes and/or expressions in the SELECT clause.

Selection Example

PILOTE
numpilote nom | prenom
From pilote e
P0003 Frangois | Luc
P0004 André | Georges
P0005 Arthur | Louis
P0006 Mathieu | Francois
numpilote| nom prenom
From pilote PO001 Dupuis | Antoine
: — : ;. P0002 Simon | Georges
Where pililote.prenom = ‘Antoilne'’j PO003 Francois | Luc
P0004 André | Georges
P0005 Arthur | Louis
Select pilote.nom P0006 Mathieu | Francois
From pilote | numpilote| nom | prenom |

‘Antoine’ ;
12

Where pilote.prenom = Dupuis

SELECT Statement

Used for queries on single or multiple tables

Clauses of the SELECT statement:

+SELECT

X List the columns (and expressions) to be returned from the query
+FROM

X Indicate the table(s) or view(s) from which data will be obtained
+WHERE

X Indicate the conditions under which a row will be included in the result
+GROUP BY

X Indicate categorization of results
+HAVING

X Indicate the conditions under which a category (group) will be included
+ORDER BY

X Sorts the result according to specified criteria

Aggregation operators (summarize)

* Many operators we can apply to set or bags of numbers or strings.
* They are used to summarize or aggregate the values in one column of relation

* For example:
« SUM
* AVG
* MIN and MAX (numerical values and character-string values) ST =
 COUNT e
=
To retrieve the number of person and their salary | 333065674 |

888548623

Count(FName) R AVERAGE(Salary) R

TP1- How many papers (studies) do we have in 2002?

B Cutput B cou nt{*}: MUMBER
S Q@ »

Eliminating Duplicates in an Aggregation

- Use DISTINCT inside an aggregation.

- Example: find the number of the different chromosomes that we

haVe genes in G EN E ta ble: O console © B LESANIMAUX ~ B GENE ~ FEBSTUDY » BB EMPL © BB ASG
® Script v T

count(

B Cutput R count{DISTINCT CHROMOSOME):NUMEER

16

The Grouping Operator +.(r)

The relation returned by the expression v (R) is constructed as follows:

1. Partition the tuples of R into groups. Each group consists of all tuples
having one particular assignment of values to the grouping attributes in
the list L. If there are no grouping attributes, the entire relation R is one

group.
2. For each group, produce one tuple consisting of:

i. The grouping attributes’ values for that group and

ti. The aggregations, over all tuples of that group, for the aggregated
attributes on list L.

17

—
—_— N
A o
- e S T .
o | ::: i 1 Eachrow ranscript
roups I L= ! describes ~
1 .
: ff:; | a group \ Attributes:
: ’// :ttributes ;qﬂggregat; 1 H —student’s /d
—_—
\ I ,,// /fj the GROUP over rows in };gj 12343314 —avg grade
. E— i S SliEl Tz 1234 —number of courses
1 / list
i / 1234
—_—— d
P All rows in a
Asine o0
GROUP BY list
GROUP BY list

18

GROUP BY

The GROUP BY statement groups rows that have the same values into summary rows

O console FH LESRESPOMSABLES B LESGARDIENS BB LESEMPLOYES B LESMAL
G} y T Manua
kount(

SELECT column_name(s)
FROM table_name |
WHERE condition ; .
GROUP BY column_name(s);

B Output EEH AFSHINPB.LESAMIMALIX EEH AFSHINPB.LES

S Q@ »
Sz NOCAGE ¢ T COUNT(NOMA) 3

19

The HAVING clause was added to SQL because
the WHERE keyword cannot be used with aggregate functions.

SELECT column_name(s) o
FROM table name

WHERE condition

GROUP BY column_name(s)
HAVING condition;

console EH LESRESPOMNSABLES EH LESGARDIENS ER LESEMPLOVES EH LESMALADIES B LESANIMALX

B Cutput FEH AFSHINFE.LESANIMALIX FH AFSHINPE.LESRESPONSABLES R Result 87

20

Extending the projection Operator

An expression £ — y, where x and y are names for attributes. The
element z — y in the list L asks that we take the attribute .: of R and
reneme it y; i.e., the name of this attribute in the schema of the result

relation is y.

An expression £ — z, where E is an expression involving attributes of

f1, constants, arithmetic operators, and string operators, an Example 5.11: Let R be the relation

name for the attribute that results from the calculation impli
example, a+b — z as a list element represents the sum of the
and b, renamed z. Element ¢l |d - e means concatenate the
string-valued attributes ¢ and d and call the result e.

A

0
0
3

'Then the result of m4 gro x(R) is

uoo":,,,

B
1
1
4

CJ'IMI\.)Q

The sorting Operator(Ordering the output)

* More efficient
* More easily find tuple

The expression 77 (R), where R is a relation and L a list of some of R’s
attributes, is the relation R, but with the tuples of R sorted in the order indi-
cated by L. If L is the list A,, As,..., A, then the tuples of R are sorted first
by their value of attribute A;. Ties are broken according to the value of As;
tuples that agree on both A, and A, are ordered according to their value of As,
and so on. Ties that remain after attribute A, is considered may be ordered

arbitrarily.
Example 6.11: The following is a rewrite of our original query of Example 6.1,
asking for the Disney movies of 1990 from the relation

Example 5.12: If R is arelation with schema R(A, B, C), then ¢ p(R) orders Movies(title, year, length, genre, studioName, producerC#)

the tuples of R by their value of C, and tuples with the same C-value are ordered

by their B value. Tuples that agree on both B and C may be ordered arbitrarily. To get the MOVIES listed by length, shortest first, and among movies of equal
O length, alphabetically, we can say:

SELECT =

FROM Movies

WHERE studioName = ’Disney’ AND year = 1990
ORDER BY length, title;

L

Exercise 6.1.3: Write the following queries in SQL. They refer to the database
schema of Exercise 2.4.1:

Product(maker, model, type)

PC(model, speed, ram, hd, price)
Laptop(model, speed, ram, hd, screen, price)
Printer(model, color, type, price)

Show the result of your queries using the data from Exercise 2.4.1.

a) Find the model number, speed, and hard-disk size for all PC’s whose price
is under $1000.

b) Do the same as (a), but rename the speed column gigahertz and the hd
column gigabytes.

¢) Find the manufacturers of printers.

d) Find the model number, memory size, and screen size for laptops costing
more than $1500.

e) Find all the tuples in the Printer relation for color printers. Remember
that color is a boolean-valued attribute.

f) Find the model number and hard-disk size for those PC’s that have a
speed of 3.2 and a price less than $2000.

Natural Joins

* The Natural join of two sets R and S is the set of pairs that agree in
whatever attributes are common to the schemas of R and S.

Relation S .
Relation R RelationR i« S
B C D
A |B - A B C D
T 2 (=¥ |2 15 1 2 5 6
3 |2 | 4 |7 |8 3 4 7 8
9 10 | 11
2 Result UV
Relation U Relation V
A B C D
A B C B C
1 2 3 4
1 2 3 2 3
1 2 3 5
° d - = ° 6 7 8 10
9 7 8 7 8 10
9 7 8 10

24

Notation: RI>1 S

Purpose: relate rows from two tables, and
* enforce equality on all common attributes
* eliminate one copy of common attributes

Jaffa Cakes
7 Salt n Shake Pcs

sip-n-Bite, Mew Y ork

** Same column came once

Jaffa Cakes Pcz Order All Boston

25

Example

* Find the ID of the loan with the largest amount.

* Hard to find the loan with the largest amount! (At least, with the tools we have so far...)
* Much easier to find all loans that have an amount smaller than some other loan

* Then, use set-difference to find the largest loan

loan_id | branch_name | amount
L-421 San Francisco | 7500
L-445 Los Angeles 2000
L-437 Las Vegas 4300
L-419 Seattle 2900

How to find all loans with an amount smaller than
some other loan?

Use Cartesian Product of loan with itself:
loan X loan

Compare each loan’s amount to all other loans

Problem: Can’t distinguish between attributes of left
and right loan relations!

Solution: Use rename operation
loan X p,.4(loan)
Now, right relation is named fest

Find IDs of all loans with an amount smaller than
some other loan:

H.'oan.l'ocn_fd(UFoon.amounK fesf.cmounf(locn X pfesf(’oon)))

Finally, we can get our result:

loan_id
L-421

l_lfocm_id(Iocm) -

Iocm X pfesr(locn)))

nfoon.foon_id(O/oan.amount< fesr.omounf(

loan_id | branch_name | amount loan_id | branch_name | amount
L-421 San Francisco | 7500 L-421 San Francisco | 7500
L-445 Los Angeles 2000 L-445 Los Angeles 2000
L-437 Las Vegas 4300 L-437 Las Vegas 4300
L-419 Seattle 2900 L-419 Seattle 2900
loan_id | branch_name | amount || loan_id | branch_name | amount
L-421 San Francisco | 7500 | L-421 San Francisco | 7500
L-421 San Francisco | 7500 L-445 Los Angeles 2000
L-421 San Francisco | 7500 | L-437 Las Vegas 4300
L-421 San Francisco | 7500 L-419 Seattle 2900

r" L-445 Los Angeles 2000 L-421 San Francisco | 7500
L-445 | LosAngeles | 2000 L-445 | Los Angeles | 2000
L-445 | LosAngeles | 2000 L-437 | Las Vegas 4300
L-445 | LosAngeles | 2000 L-419 | Seattle 2900

2/

SQL: What are the names of the animals that have never been ill?

Minus Query

SELECT * FROM tables [WHERE conditions]
MINUS
SELECT * FROM tables [WHERE conditions];

Explanation: The MINUS query will return the records in the blue shaded area. These are the records that exist in Dataset1 and not in Dataset2.

Each SELECT statement within the MINUS guery must have the same number of fields in the result sets with similar data types.

O console FFH LESMALADIES FEH LESANIMAUX

@ }r Tx Manusa
LESANIMAUX.

B output FEH AFSHINPB.LESANIMALX FEH AFSHINPB.LESANIMALY 2

S Q

28

Outer join

* Fill in missing fields with nulls

We shall consider the “natural” case first, where the join is on equated
values of all attributes in common to the two relations. The outerjoin R 1 S
is formed by starting with R =S, and adding any dangling tuples from R or
S. The added tuples must be padded with a special null symbol, L, in all the
attributes that they do not possess but that appear in the join result. Note
that L is written NULL in SQL (recall Section 2.3.4).

(a) Relation U (b) Relation V

A\ B|{(C | D
1 2 3 10
A5 } ¢ B|C|D 1 2 3 11
1 2 3 2 3 10 4 5 6 L
o 2 131U 718 |9 L
Te o 617 12 16 T 12

(c) Result U2 V

29

Left Outerjoin Example

For an example consider the tables Employee and Dept and their left outer join:

Employee
Name EmpID DeptName
Harry 3415 Finance
Sally 2241 Sales
George 3401 Finance
Harriet 2202 Sales
Dept

Sales Harriet

Name | EmpID | DeptName Mgr

Harry 3415 Finance null

Sally 2241 Sales Harriet
George | 3401 Finance null
Harriet | 2202 Sales Harriet

Example

Exercise 5.2.1: Here are two relations:
R(A, B): {(0,1), (2,3), (0,1), (2,4), (3,4)}
5(B,C): {(0,1), (2,4), (2,5), (3,4), (0,2), (3.4)}

Compute the following: a) 4,5 42, 52(R); b) npi1.c-1(58); ¢) TB A(R);
d) 7B,c{S)i e) 8(R); f)d(5); g)va, smm(R); h) veaveer(S) 1) va(R);

J) 'T,qﬂhx((“j(RDﬂS) k) D'Dd S; I)HBE-‘]H S, m)RD?d 5; n}RB%R.B{S.B g,

31

Left outer join- Right outer join

There are many variants of the basic {natural) outerjoin idea. The left
outerjoin R tap S is like the outerjoin, but only dangling tuples of the left
argument R are padded with L and added to the result. The right outerjoin
Rwag S is like the outerjoin, but only the dangling tuples of the right argument
S are padded with 1 and added to the result.

Products and Joins in SQL

* SQL has a simple way to couple relations in one query: List each
relation in the FROM clause.

Example 6.12: Suppose we want to know the name of the producer of Star
Wars. To answer this question we need the following two relations from our
running example:

Movies(title, year, length, genre, studioName, producerC#)
MovieExec(name, address, cert#, netWorth)

The producer certificate number is given in the Movies relation, so we can do a
simple query on Movies to get this number. We could then do a second query
on the relation MovieExec to find the name of the person with that certificate
number.

However, we can phrase both these steps as one query about the pair of
relations Movies and MovieExec as follows:

SELECT name The producerC# attribute of the Movies tuple must be the same certifi-
FROM Movies, MovieExec cate number as the cert# attribute in the MovieExec tuple. That is,

WHERE title = ’Star Wars’ AND producerC# = cert#; these two tuples must refer to the same producer.

Products and Joins in SQL

title producerC#

An ———
tl.lp e /"\

™1) \

S
k

Is this Movies

“‘Star Wars’’?

name cert#

> tople
=
N\

MovieExec

|
If so, output this.

Products and Joins in SQL

Sometimes we ask a query involving several relations, and among these relations
are two or more attributes with the same name. If so, we need a way to indicate
which of these attributes is meant by a use of their shared name. SQL solves
this problem by allowing us to place a relation name and a dot in front of an
attribute. Thus R.A refers to the attribute A of relation .

Example 6.13: The two relations

MovieStar(name, address, gender, birthdate)
MovieExec(name, address, cert#, netWorth)

each have attributes name and address. Suppose we wish to find pairs consist-
ing of a star and an executive with the same address. The following query does
the job.

SELECT MovieStar .name, MovieExec.name
FROM MovieStar, MovieExec
WHERE MovieStar.address = MovieExec.address;

Chapter 3

Design Theory for
Relational Databases

Chapter 3

* We can examine the requirements for a database and define relations
directly, without going through a high-level intermediate stage.

* In this chapter:
 |dentify the problems that are caused in some relation schemas
* Normalization

37

Functional Dependencies

Determinant X—=y Dependend
Y is determined by x X=2 y=?
X=2 y=7

In the first relation, If | tell you the value of X
you can find the value of Y

X=2 y=?

So, based on relation we can find the FD.

X and Y can be a set of attributes.

w U1 N

N U1 N

38

Functional Dependencies

* If two tuples of R agree on all the attributes A1,A2,A3, ..., An then they must also
agree on all of another list of attributes B1,B2,...,.Bm.

* We write this FD formally as A1A2...An = B1B2... Bm and say that
“A1,A2,....,An functionally determine B1,B2,...,.Bm”

If one set of attributes in a table determines :H_ A'sH= Bs
another set of attributes in the table, then,
the second set of attributes is said to be
functionally dependent on the first set of

attributes.

e Bl R Y

u

Ifr and Then they
u agree must agree
here. here

Examples

ISBN

0-321-32132-1

0-55-123456-9

0-123-45678-0

1-22-233700-0

Title

Balloon

Main Street

Ulysses

Visual
Basic

Price

$34.00

$22.95

$34.00

$25.00

Table Scheme: {ISBN, Title, Price}
Functional Dependencies: {ISBN} - {Title}
{ISBN} - {Price}

Example: “no two courses can meet in the same room at the same time”

tells us: hour, room -> course

40

Example2

title year | length | genre | studioName | starName
Star Wars 1977 | 124 SciFi Fox Carrie Fisher
Star Wars 1977 | 124 SciFi Fox Mark Hamill
Star VWars 1977 | 124 SciFi Fox Harrison Ford
Gone With the Wind | 1939 | 231 drama MGM Vivien Leigh
Wayne’s World 1992 | 95 comedy | Paramount Dana Carvey
Wayne’s World 1992 | 95 comedy | Paramount Mike Mayers

Figure 3.2: An instance of the relation Moviesi(title, year, length,

genre, studioName, starName)

As we shall see, the schema for MOVIES1 is not a good design.

Title , year = length, genre, StudioName

Thus, we expect that given
a title and year, there is a
unique movie.

® Title, year—> starName

This FD says that two tuples have the same value in their TITLE and Year components, the these

two tuples must also have

* the same values in their Length component,
* the same values in their genre components,
* the same values in their studioName components

41

Functional Dependencies

* FD says something about all possible instances of the relation, not
about one of its instances.

x|y

X>Y 1 6 Only we need to find tuples
IF tuple(i).x=tuple(j).x then 2 7 V‘;\'th I;f\ivr? e“q;Ui' ;/alue, ;chen
tuple(i).y=tuple(j).y 1 6 check the IF statemen
If y for both of them is same
3 22 .
so x->y is FD.
x|y
1 6
7 ©
1 6
2 22 42

Keys of Relations

* We say a set of one or more attributes {A1,A2,A3,...An} is a key for a relation R if:

1. Those attributes functionally determine all other attributes of a relation .
It is impossible for two distinc tuples of R to agree on all A1,A2,A2,....,An

2. No proper subset of {A1,A2,A3,...An} functionally determines all other
attributes of R;

a key must be minimal.

it f K title | year | length | genre | studioName | starName
_{tlt €, year, starname} orm a key Star Wars 1977 | 124 SciFi Fox Carrie Fisher
1- two different tuples can not agree on all of title, year Star Wars 1977 | 124 | SciFi | Fox Mark Hamill
d st Star Wars 1977 | 124 SciFi Fox Harrison Ford
and starname Cone With the Wind | 1939 | 231 | drama | MCM Vivien Leigh
2-no proper subset of it functionally determines all Wayne’s World 1992 | 96 comedy | Paramount | Dana Carvey
Wayne’s World 1992 | 95 comedy | Paramount Mike Mayers

other attributes ({title , year}is not a key)

Figure 3.2: An instance of the relation Moviesi(title, year, length,

Sometimes a relation has more than one key. .
genre, studioName, starName)

43

What Is “Functional” About Functional
Dependencies?

A1As--- A, = B is called a “functional” dependency because in principle
there is a function that vakes a list of values, one for each of attributes
A;,Az,..., A, and produces a unique value (or no value at all) for B.
For instance, in the Movies1 relation, we can imagine a function that
takes a string like "Star Wars" and an integer like 1977 and produces the
unique value of length, namely 124, that appears in the 1elation Movies1.
However, this function is not the usual sort of function that we meet in
mathematics, because there is no way to compute it from first principles.
That is, we cannot perform some operations on strings like "Star Wars"
and integers like 1977 and come up with the correct length. Rather, the
function is only computed by lookup in the relation. We look for a tuple
with the given title and year values and see what value that tuple has
for length.

SuperkKey

A set of attributes that contain a key is called superkey.
Every superkey satisfies the first condition of a key.
Thus every key is a superkey.

However, some superkeys are not (minimal)keys.

A superkey need not satisfy the second condition :minimality.

Example 3.3: In the relation of Example 3.2, there are many superkeys. Not
only is the key

{title, year, starName}
a superkey, but any superset of this set of attributes, such as
{title, year, starName, length, studioName}

is a superkey. O

45

Example3

! Exercise 3.1.3: Suppose R is a relation with attributes A;, 4,,... , 4,. Asa
function of n, tell how many superkeys R has, if:

a) The only key is A4;.
b)
c) The only keys are {A;, A2} and {43, A4}
d) The only keys are {A4;, A2} and {4, 43).

The only keys are A, and A,.

In general, if we have ‘N’ attributes with one candidate key then the number of possible superkeys is 2(N-1),

Let a Relation R have attributes {al, a2, a3,..., an} and the candidate keys are “al a2”, “a3 a4” then the possible
number of super keys?

Super keys of(al a2) + Super keys of(a3 a4) — Super keys of(al a2 a3 a4)

= 2(N=2) £ 2(N-2) _ 2(N-4)

Let a Relation R have attributes {al, a2, a3,..., an} and the candidate keys are “al a2”, “al a3” then the possible number of
Super keys of (al a2) + Super keys of (al a3) — Super keys of(al a2 a3)
= 2MN-2) + 27N -2) - 27A(N - 3)

46

Example

How many possible superkeys do we have in this example?
- {A}is a super key. (the values are not repeated)

- So, {A,B}is superkey, since A is a superkey.

- {A,C}, {A,D},{A,B,C},{A,C,D},{A,B,D},{A,B,C,D}

- Order does not matter

- Is {B}is a super key? No {C}No {D}No

- {B,C,D} No. So subset of {B,C,D} can not be a superkey

- Answer is 8

47

Candidate Key

* |s a superkey whose proper subset is not a superkey. (minimal super key)

SK= {A} {A B} {A C} {A B,C} A | B | C
{B} OR {C} NO
SK={B,C}

SK= {A},{A,B},{A,C},{A,B,C}, {B,C}
proper subset :
Suppose X1={1,2,3} and X2={1,2}

X2 i§ subset of x1 if every member of X2 must be member of X1 So every CK is a SK
X2 is proper subset of x1

First x2 is subset of x1 But every SK is not a CK
But x1 is not subset of x2
{A,B,C} : WHOSE proper subset are {A,B}, {B,C},{A,C},{A}, {B}, {C} CK=NO SOME ARE SUPERKEYS

{A,C}: WHOSE proper subset are {A},{C} CK=NO SOME ARE SUPERKEYS
{A}: CK=YES {B,C}: WHOSE proper subset are{B},{C} none of its proper subset is sk CK=YES 48

A W B
R = O O
v W U1 W

Rules about Functional Dependencies

* The ability to discover additional FD ‘s is essential when we discuss
the design of good relation schemas

1- Reasoning about Functional Dependencies

Example 3.4: If we are told that a relation R(A, B,C) satisfies the FD’s
A — Band B =5 C, then we can deduce that R also satisfies the FD 4 — C.
How does that reasoning go? To prove that 4 — €, we must consider two
tuples of R that agree on A and prove they also agree on C.

2- The splitting/combining rule

We can replace an FD A4, --- 4, = B1By--- B, by a set of FD’s _

AyAq--- A, = B; fori = 1,2,... ,m. This transformation we call the title year » gence.

Sphttiﬂg ‘!‘R!E. title year —+ studioName
is equivalent to the single FD:

We can replace a set of FD's 41 A;--- A, = B;fori=1,2,...,m by the title year — length genre studioName
single FD 4,45 ---4, = B1Bs---B,,. We call this transformation the that we asserted there. ©

combining rule.

Example 3.5: In Example 3.1 the set of FD’s:

49

 However, there is no splitting rule for left sides

Example 3.6: Consider one of the FD’s such as:
title year — length
for the relation Movies1 in Example 3.1. If we try to split the left side into

title — length
year — length

then we get two false FD’s. That is, title does not functionally determine
length, since there can be several movies with the same title (e.g., King Kong)
but of different lengths. Similarly, year does not functionally determine length,

because there are certainly movies of different lengths made in any one year.
O

50

Derivation rules

e X, Y, Z are subsets of U

* Reflexivity
e f XcYcUthenY-->X

* Augmentation
e if X-->Y and Zc U then X,Z -->Y,Z
Transitivity
e ifX->YandY-->ZthenX-->7
* Pseudo - transitivity
e ifX-->Yand YW -->Zthen X,W -->7Z
* Union
e fX->YandX-->ZthenX-->Y,Z

* Decomposition
e ifX->YandZC Y thenX-->Z

51

Anomalies

* Problems such as redundancy that occur when we try to cram too
much into a single relation are called anomalies:

1. Redundancy

* Information may be repeated unnecessarily in several tuples.

2. Update anomalies

 We may change information in one tuple but leave the same information
unchanged in another.

3. Deletion anomalies

* |f a set of values becomes empty, we may lose other information as a side
effect.

Examples

title | year | length | genre | studioName | starName

Star Vars 1977 | 124 SciFi Fox Carrie Fisher

Star Wars 1977 | 124 SciFi Fox Mark Hamill

Star Wars 1977 | 124 SciFi Fox Harrison Ford Redundancy
Gone With the Wind | 1939 | 231 drama MGM Vivien Leigh

Wayne's World 1992 | 95 comedy | Paramount Dana Carvey

Wayne’s World 1992 | 95 comedy | Paramount Mike Mayers

Figure 3.2: An instance of the relation Moviesi(title, year, length,
genre, studioName, starName)

 Update anomaly: If we found that star wars is really 125 minutes long, we might
carelessly change the length in the first tuples but not in the second and third
tuples.

Normalization Algorithms

| evels of Normalization

 Levels of normalization based on the amount of redundancy in

the database.
* First Normal Form (1NF)
e Second Normal Form (2NF)

* Third Normal Form (3NF) E?g\?e:]iigger
* Boyce-Codd Normal Form (BCNF) subset of the
* Fourth Normal Form (4NF) lower level

Fifth Normal Form (5NF)
e Domain Key Normal Form (DKNF)

[Most databases should be 3NF or BCNF in order to avoid the database anomalies.]

55

