
Chapter 3
Design theory for Relational

Databases

Main reference:

A First Course in Database Systems (and associated material) by

J. Ullman and J. Widom, Prentice-Hall
1

Université Grenoble Alpes
22/03/2023

Bahareh Afshinpour

bahareh.afshinpour@univ-grenoble-alpes.fr

Examples

SQL – Structured Query Language

• The most commonly used relational DBMS’S query and modify the
database through a language called SQL.

• The portion of SQL that supports queries has capabilities very close to
relational algebra.

SQL – Structured Query Language

• Perhaps the simplest form of query in SQL asks for those tuples of some one
relation that satisfy a condition.

• This simple query, like almost all SQL queries, uses the three keywords. SELECT,
FROM, and WHERE that characterize SQL.

Projection in SQL

Projection in SQL

• Sometimes, we wish to produce a relation with column headers different from
the attributes of the relation mentioned in the From clause.

• We may follow the name of the attribute by the keyword AS and an alias, which
becomes the header in the result relation.

Projection in SQL

• We can use an expression in place of an attribute.

• Lengths would
be calculated in
hours

• Then rename

Case Insensitivity

Selection

• WHERE clause <attribute> <operator> <value>

• We may build expressions by comparing values using the six common
comparison operators: =, <> , > , <, <= , >=

Not equal

vol.depart = "Londres"

avion.cap < '300'

avion.type = 'AIRBUS 300'

Selection

12

Select pilote.nom

From pilote

Where pilote.prenom = ‘Antoine’;

numpilote nom prenom

P0001

P0002

P0003

P0004

P0005

P0006

Dupuis

Simon

François

André

Arthur

Mathieu

Antoine

Georges

Luc

Georges

Louis

François

PILOTE

Select pilote.nom

From pilote

Where pilote.prenom = ‘Antoine’;

numpilote nom prenom

P0001

P0002

P0003

P0004

P0005

P0006

Dupuis

Simon

François

André

Arthur

Mathieu

Antoine

Georges

Luc

Georges

Louis

FrançoisSelect pilote.nom

From pilote

Where pilote.prenom = ‘Antoine’;
numpilote nom prenom

P0001 Dupuis Antoine

Selection Example

SELECT Statement

Used for queries on single or multiple tables

Clauses of the SELECT statement:
SELECT

List the columns (and expressions) to be returned from the query

FROM

Indicate the table(s) or view(s) from which data will be obtained

WHERE

Indicate the conditions under which a row will be included in the result

GROUP BY

Indicate categorization of results

HAVING

Indicate the conditions under which a category (group) will be included

ORDER BY

Sorts the result according to specified criteria
13

Aggregation operators (summarize)

• Many operators we can apply to set or bags of numbers or strings.

• They are used to summarize or aggregate the values in one column of relation

• For example:

• SUM

• AVG

• MIN and MAX (numerical values and character-string values)

• COUNT

14

To retrieve the number of person and their salary

Count(FName) R AVERAGE(Salary) R

TP1- How many papers (studies) do we have in 2002?

16

Eliminating Duplicates in an Aggregation

- Use DISTINCT inside an aggregation.

- Example: find the number of the different chromosomes that we
have genes in GENE table:

The Grouping Operator

17

18

GROUP BY

19

The GROUP BY statement groups rows that have the same values into summary rows

SELECT column_name(s)
FROM table_name
WHERE condition
GROUP BY column_name(s);

20

The HAVING clause was added to SQL because
the WHERE keyword cannot be used with aggregate functions.

SELECT column_name(s)
FROM table_name
WHERE condition
GROUP BY column_name(s)
HAVING condition;

21

Extending the projection Operator

22

The sorting Operator(Ordering the output)

• More efficient

• More easily find tuple

Natural Joins

• The Natural join of two sets R and S is the set of pairs that agree in
whatever attributes are common to the schemas of R and S.

24

25

Purpose: relate rows from two tables, and
• enforce equality on all common attributes
• eliminate one copy of common attributes

Example
• Find the ID of the loan with the largest amount.

• Hard to find the loan with the largest amount! (At least, with the tools we have so far…)

• Much easier to find all loans that have an amount smaller than some other loan

• Then, use set-difference to find the largest loan

27

SQL: What are the names of the animals that have never been ill?

28

SELECT * FROM tables [WHERE conditions]
MINUS
SELECT * FROM tables [WHERE conditions];

29

Outer join

• Fill in missing fields with nulls

Left Outerjoin Example

Name EmpID DeptName

Harry 3415 Finance

Sally 2241 Sales

George 3401 Finance

Harriet 2202 Sales

DeptName Mgr

Sales Harriet

Name EmpID DeptName Mgr

Harry 3415 Finance null

Sally 2241 Sales Harriet

George 3401 Finance null

Harriet 2202 Sales Harriet

Employee

Dept

For an example consider the tables Employee and Dept and their left outer join:

Example

31

Left outer join- Right outer join

Products and Joins in SQL

• SQL has a simple way to couple relations in one query: List each
relation in the FROM clause.

Products and Joins in SQL

Products and Joins in SQL

36

Chapter 3

• We can examine the requirements for a database and define relations
directly, without going through a high-level intermediate stage.

• In this chapter:
• Identify the problems that are caused in some relation schemas

• Normalization

37

x y

1 6

2 7

5 10

3 22

38

x y

1 6

2 7

5 10

2 22

X→y

Y is determined by x

Determinant Dependend

X=2 y=?

X=2 y=7

X=2 y=?

In the first relation, If I tell you the value of X
you can find the value of Y

Functional Dependencies

So, based on relation we can find the FD.

X and Y can be a set of attributes.

Functional Dependencies

• If two tuples of R agree on all the attributes A1,A2,A3, …, An then they must also
agree on all of another list of attributes B1,B2,…,Bm.

• We write this FD formally as A1A2…An → B1B2… Bm and say that

“A1,A2,….,An functionally determine B1,B2,…,Bm”

If one set of attributes in a table determines
another set of attributes in the table, then
the second set of attributes is said to be
functionally dependent on the first set of
attributes.

39

Examples

40

Example: “no two courses can meet in the same room at the same time”
tells us: hour, room -> course

Example2

As we shall see, the schema for MOVIES1 is not a good design.
Title , year → length, genre, StudioName
This FD says that two tuples have the same value in their TITLE and Year components, the these
two tuples must also have

• the same values in their Length component,
• the same values in their genre components,
• the same values in their studioName components

Thus, we expect that given
a title and year, there is a
unique movie.

Title, year→ starName

41

• FD says something about all possible instances of the relation, not
about one of its instances.

42

X→Y
IF tuple(i).x=tuple(j).x then

tuple(i).y=tuple(j).y

X y

1 6

2 7

1 6

3 22

x y

1 6

2 7

1 6

2 22

Functional Dependencies

Only we need to find tuples
with two equal value, then
check the IF statement

If y for both of them is same
so x->y is FD.

Keys of Relations

• We say a set of one or more attributes {A1,A2,A3,…An} is a key for a relation R if:

1. Those attributes functionally determine all other attributes of a relation .
It is impossible for two distinc tuples of R to agree on all A1,A2,A2,….,An

2. No proper subset of {A1,A2,A3,…An} functionally determines all other
attributes of R;

a key must be minimal.

-{title, year, starname} form a key
1- two different tuples can not agree on all of title, year
and starname
2-no proper subset of it functionally determines all
other attributes ({title , year} is not a key)

Sometimes a relation has more than one key.
43

44

SuperKey

• A set of attributes that contain a key is called superkey.

• Every superkey satisfies the first condition of a key.

• Thus every key is a superkey.

• However, some superkeys are not (minimal)keys.

• A superkey need not satisfy the second condition :minimality.

45

Example3

46

In general, if we have ‘N’ attributes with one candidate key then the number of possible superkeys is 2(N – 1).

Let a Relation R have attributes {a1, a2, a3,…, an} and the candidate keys are “a1 a2”, “a3 a4” then the possible
number of super keys?
Super keys of(a1 a2) + Super keys of(a3 a4) – Super keys of(a1 a2 a3 a4)
⇒ 2(N – 2) + 2(N – 2) - 2(N – 4)

Let a Relation R have attributes {a1, a2, a3,…, an} and the candidate keys are “a1 a2”, “a1 a3” then the possible number of s
Super keys of (a1 a2) + Super keys of (a1 a3) – Super keys of(a1 a2 a3)
⇒ 2^(N – 2) + 2^(N – 2) – 2^(N – 3)

A B C D

1 2 3 1

2 2 7 1

3 2 7 1

4 7 7 1

5 7 3 1

6 7 3 8

47

Example

How many possible superkeys do we have in this example?
- {A} is a super key. (the values are not repeated)
- So , {A,B} is superkey, since A is a superkey.
- {A,C} , {A,D},{A,B,C},{A,C,D},{A,B,D},{A,B,C,D}
- Order does not matter
- Is {B}is a super key? No {C}No {D}No
- {B,C,D} No. So subset of {B,C,D} can not be a superkey
- Answer is 8

Candidate Key

• Is a superkey whose proper subset is not a superkey. (minimal super key)

48

A B C

1 6 3

2 6 5

3 1 3

4 1 5

SK= {A},{A,B},{A,C},{A,B,C}
{B} OR {C} NO
SK={B,C}
SK= {A},{A,B},{A,C},{A,B,C}, {B,C}

proper subset :
Suppose X1={1,2,3} and X2={1,2}
X2 is subset of x1 if every member of X2 must be member of X1
X2 is proper subset of x1

First x2 is subset of x1
But x1 is not subset of x2

{A,B,C} : WHOSE proper subset are {A,B}, {B,C},{A,C},{A}, {B}, {C} CK=NO SOME ARE SUPERKEYS
{A,C}: WHOSE proper subset are {A},{C} CK=NO SOME ARE SUPERKEYS
{A}: CK=YES {B,C}: WHOSE proper subset are{B} ,{C} none of its proper subset is sk CK=YES

So every CK is a SK
But every SK is not a CK

Rules about Functional Dependencies

• The ability to discover additional FD ‘s is essential when we discuss
the design of good relation schemas

49

1- Reasoning about Functional Dependencies

2- The splitting/combining rule

• However, there is no splitting rule for left sides

50

Derivation rules
• X, Y, Z are subsets of U

• Reflexivity

• if X Y U then Y --> X

• Augmentation

• if X-->Y and Z U then X,Z -->Y,Z

• Transitivity

• if X -->Y and Y --> Z then X --> Z

51

• Pseudo - transitivity
• if X --> Y and Y,W --> Z then X,W --> Z

• Union
• if X --> Y and X --> Z then X --> Y, Z

• Decomposition
• if X --> Y and Z Y then X --> Z

Anomalies

• Problems such as redundancy that occur when we try to cram too
much into a single relation are called anomalies:

1. Redundancy
• Information may be repeated unnecessarily in several tuples.

2. Update anomalies
• We may change information in one tuple but leave the same information

unchanged in another.

3. Deletion anomalies
• If a set of values becomes empty, we may lose other information as a side

effect.

52

Examples

• Update anomaly: If we found that star wars is really 125 minutes long, we might
carelessly change the length in the first tuples but not in the second and third
tuples.

53

Redundancy

Normalization Algorithms

54

Levels of Normalization

• Levels of normalization based on the amount of redundancy in
the database.

• First Normal Form (1NF)

• Second Normal Form (2NF)

• Third Normal Form (3NF)

• Boyce-Codd Normal Form (BCNF)

• Fourth Normal Form (4NF)

• Fifth Normal Form (5NF)

• Domain Key Normal Form (DKNF)

55

Most databases should be 3NF or BCNF in order to avoid the database anomalies.

Each higher

level is a

subset of the

lower level

