
3NF, BCNF
and 

Transaction

Main reference:

A First Course in Database Systems (and associated material)  by 

J. Ullman and J. Widom, Prentice-Hall
1

Université Grenoble Alpes
18/04/2023

26.04.2023

Bahareh Afshinpour

bahareh.afshinpour@univ-grenoble-alpes.fr 



• Still we have some redundancy in our database if our tables are in the 
2NF. Because of that redundancy, some anomalies may exist right 
now. 

• The third normal form is an adequate normal form for your database.

• It means if your database is in the 3NF then you can say that it is a 
good database design.  

2



What kind of anomaly we have in the 2NF

PasspostID Name Family country City
Postal-
code

Degree

58459435 David Mixam USA x 9011 1

21476984 Mark Smith USA y 9011 2

74632543 Franck Thury USA z 9011 1

93268547 Sara Victory canada v 91761 3

- The only candidate key is the PassportID (primary-key) 

- Since here the candidate key has only one attribute 
(simple candidate key), then this relation is in the 2NF. 

In the 2NF there should be no partial dependency. 

What is partial functional dependency (PD) :
- A proper subset of candidate key → non-prim attributes(NPA)

If only one attribute we have for the candidate key 
(PassportID) obviously no proper subset is possible. So we 
will never have a partial dependency.  ( This relation is in 2NF) 

-But This relation still has a redundancy
By using postal code we can determine country and city. (postal-code → country,city)   

NPA
Is not candidate key or 
partial candidate key

NPA

Redundancy
Update anomaly

Non prime attribute → Non prime attribute
Transitive dependency

3



• The relation is in the 3NF if and only if :
1- It is 2NF

2- It does not contain any transitive dependency (for non-prime attributes)  

Non prime attribute → Non prime attribute

R(A,B,C,D)  FD={A→B, B→C, C→D}

- Find out candidate key ABCD+ ={A,B,C,D}      We have all the attributes and it is a super key. 

- We start to discard it since the candidate key is a minimal super key.     ABCD+ A +      

={ABCD}

CK= Is a superkey whose proper subset is not a superkey. 

A has no PRPOPER SUBSET, so CK=YES 

SK=YES 

Prime attributes (PA) are those which are part of candidate keys.

PA=A 4



Short trick: If prime attributes are present on the right-hand side of any functional dependency, then there 
would be more candidate keys. If not, there would be no more candidate keys. 

R(A,B,C,D)  FD={A→B, B→C, C→D} PA=A

In this example, we have no more prime attributes. The only candidate key is A

Non prime attribute → Non prime attribute

If this kind of dependency is present in the relation, this relation is not in the 3NF. 

A→B  , A is the prime attributes  - no problem

B→C  , B and C are the non- prime attributes  - transitive dependency

C→D  , C and D are the non- prime attributes  - transitive dependency

So this relation is not in the 3NF. 5



6



Normalization Example

• Is R in the 3NF?

R(A,B,C,D,E,F)     FD={AB->CDEF, BD->F}

ABCDEF+ ={A,B,C,D,E,F}

AB+ ={A,B,C,D,E,F} AB is a super key.  Check out candidate key : A+ ={A}    B+ ={B}    

AB is a candidate key  so prime={A,B}

To check out if more candidate key exist : see right side and find prime attribute

No more candidate key : so  candidate key={AB} , Prime={A,B}  Non-Prime={C,D,E,F}

Non prime attribute → Non prime attribute

FD={AB->CDEF, BD->F}      AB->CDEF   prime->non-prime
BD->F  B is prime, D is non-prime.BD is Non-prime. Non-prime-> Non-prime    

R is not in 3NF



Decomposition

• Suppose a given relation is in the 2NF, we have to divide(decompose) 
the relation to have a higher normal form.

• For decomposition must follow some properties. 
• Dependency preserving decomposition

• Lossless join decomposition

• R(A,B,C)

• FD=G 

A B C

1 5 7

2 5 2

3 9 7

4 9 2

A B B C

?

R1   R2   R3   R4   ……. Rn  
F1 U F2  U F3  U F4 U …….  Fn F=G 8



Example of Dependency preserving
• Suppose we divide R into two sub relations R1 and R2. Is this dependency preserving 

decompositions?

R(A,B,C,D,E)    FD= {A→B, B→C, C→D, D→A}

R1(A,B,C)      R2(C,D,E)

First, we need to find the FD for R1 and R2.
- Find out the closure of all the attributes in the relation. 
For example for R1(A,B,C) , one member, two member , … : A +      

B +      

C +      

={A,B,C,D}
={B,C,D,A}
={C,D,A,B}

We do not have D in R1 

A→BC
B→CA

C→AB
AB +      ={A,B,C,D} AB→C     But it is a duplicate FD

Since only using A→BC means A→C so 
AB→C . So we are not getting sth new

F1 ={A→BC, B→CA, C→AB}

Second, R2(C,D,E) , we find closure of each single attributes

C +      

D +      

E +      

={C,D,A,B}
={D,A,B,C}
={E}

C→D
D→C

CD +      

DE +      

CE +      

={CDAB}
={DE,AB,C}
={CEDAB}

DE→C It would be duplicate because we have D→C

CE→D It would be duplicate because we have C→D
F2 ={D→C, C→D}

F1 U F2=
{A→BC, B→CA, C→AB, D→C, C→D}

9



• If every FD of F is a member of G and every FD of G is a member of F 
then we can say they are equivalent. 

F1 U F2 == G   ???? 

G= {A→B, B→C, C→D, D→A}

F1 U F2=F={A→BC, B→CA, C→AB, D→C, C→D} D + ={DCAB}

It means D→A is in the F

Yes. This example is a dependency-preserving decomposition

10



Lossless join decomposition

• Decomposition of a relation R is lossless if it is feasible to reconstruct 
the relation from decomposed sub relations by using joints. 

A decomposition {R1, R2,…, Rn} of a relation R is called a lossless decomposition for R if the natural join 
of R1, R2,…, Rn produces exactly the relation R.

11



12



13

Normalization Example



BCNF(Boyce-Codd Normal Form)

• It is strong version of 3NF.

The relation is in BCNF:
- It is in 3NF
- For each non-trivial functional dependency 

The left hand side of dependency must be a Supekey ( X->Y ) 



• R(A,B,C)    FD={A->B, B->C, C->A}

First find out the candidate key:
ABC + ={A,B,C}  we have all the relation so it is a super key

We start to discard as many attribute that we can since a candidate key is a minimal super key.

ABC + ={A,B,C} A + ={A,B,C} A has no proper subset. If no proper subset is possible, 
then there is no chance to have superkey CK=  yes,   Prime attribute={A}

More candidate key ??? Check the right side of the FD. 
If you can find the prime attribute we have more candidate key

C->A    so here we have more candidate key 

Example



C->A    so here we have more candidate key 

Example R(A,B,C)    FD={A->B, B->C, C->A}

CK=A   , replace A with C.  Is C candidate key?? We have to check.
C + ={C,A,B}  and C has no proper subset.    CK=yes 
Prime attributes={A,C}
see right side.  We have B->C  . So we replace C by B.  …….
Prime attributes={A,C,B}

See the left side:
A->B  
B->C
C->A
All the left side are candidate key. Definitely they are super key.  So 

This relation is in the BCNF 



Find the highest normal form in R

• R(A,B,C,D,E)    FD={A->BCDE, BC->ACE, D->E}



Transaction



• Transaction is a group or set of tasks into a single execution unit. 

• Each transaction begins with a specific task and ends when all the tasks 
in the group successfully complete.  

• If any of tasks fails the transactions fails.  

• The effects of all the SQL statements in a transaction can be either 
all committed (applied to the database) or

all rolled back (undone from the database).

Transaction

•Decrement the savings account

•Increment the checking account

•Record the transaction in the transaction journal



Transaction

Unit of works In this unit of work, there could be multiple changes on 
multiple different rows in different tables 
that occur all that once.  

1

2
For example Insert Into Table1

Update Table 2

Tx 

An important trait (property) of a transaction is the fact that these 
two things must either  succeed or fail together as a unit

Therefore, a transactions has only two results : - success   -Failure

A transaction is a 
logical, atomic unit of 

work that contains one 
or more SQL
statements.





• When using the generic SQL interface, each statement is a transaction 
by itself.

• Also, SQL allows the programmer to group several statement into a 
single transaction. 

• The SQL command START TRANSACTION  is used to mark the 
beginning of the transaction.

• There are two ways to end a transaction:
▪ Using COMMIT

▪ Using ROLLBACK



Example

We have two different users. 

User1(system) want to add one new tuple in the department 



If we proceed in the sys terminal, and check the department 

We can not see any changes in the table

The changes must be saved otherwise it is discarded

When any user is updating any changes, only the user itself can see the changes without commit or rollback. No 
other user can access or view the updates, as it is not permanently saved by the user who performed them. 

Example



Example



ROLLBACK



• Without Commit or Rollback, the permanent update is not possible.

• But if the user changes or updates sth and disconnects from the 
database properly, commits occur. 

If user disconnects from the database after some changes auto commits occurs.  



•START TRANSACTION or BEGIN start a new transaction.
•COMMIT commits the current transaction, making its changes permanent.
•ROLLBACK rolls back the current transaction, canceling its changes.
•SET autocommit disables or enables the default autocommit mode for the current session.

SET TRANSACTION marks the beginning of a transaction. 
Any changes you make to your data following the 

beginning of a transaction are not made permanent 
until you issue a COMMIT.

Tip
Using SET TRANSACTION to begin a transaction is optional. A new transaction begins implicitly with the first DML statement that you 

execute after you make a database connection or with the first DML statement that you execute following a COMMIT or a ROLLBACK (or 
any DDL statement such as TRUNCATE). You need to use SET TRANSACTION only when you want transaction attributes such as READ ONLY

that are not the default.

Transaction



read/write transaction : Such a transaction is the default, and it allows you to issue 
statements such as UPDATE and DELETE. 
You can also create read-only transactions:



30

ACID Transactions

• A DBMS is expected to support “ACID transactions,” processes that 
are:
• Atomic : All actions of a transaction are atomic and either they are all 

performed or none of the actions are performed. 

• Consistent : Each transaction, when run alone, must preserve the 
consistency of the database. 

• Isolated : Each transaction is isolated (protected) from the effects of other 
concurrently running transactions. 

• Durable : Effects of a process do not get lost if the system crashes. once a 
transaction commits, the data should persist in the database even if the 
system crashes before the data is written to non-volatile storage.



31

Isolation Levels

• SQL defines four isolation levels = choices about what interactions 
are allowed by transactions that execute at about the same time.

• How a DBMS implements these isolation levels is highly complex, and 
a typical DBMS provides its own options.



32

Choosing the Isolation Level

• Within a transaction, we can say:

SET TRANSACTION ISOLATION LEVEL X

where X =
1. SERIALIZABLE

2. REPEATABLE READ

3. READ COMMITTED

4. READ UNCOMMITTED





SQL





36

Updates

• To change certain attributes in certain tuples of a relation:

UPDATE   <relation>

SET    <list of attribute assignments>

WHERE   <condition on tuples>;

Change drinker Fred’s phone number to 555-1212:
UPDATE Drinkers

SET phone = ’555-1212’

WHERE name = ’Fred’;



37

Example: Update Several Tuples

• Make $4 the maximum price for beer:

UPDATE Sells

SET price = 4.00

WHERE price > 4.00;



38

Adding Attributes

• We may add a new attribute (“column”) to a relation 
schema by:

ALTER TABLE <name> ADD

<attribute declaration>;

• Example:

ALTER TABLE Bars ADD  phone CHAR(16)



39

Deleting Attributes

• Remove an attribute from a relation schema by:

ALTER TABLE <name>

DROP <attribute>;

• Example: we don’t really need the license attribute 
for bars:

ALTER TABLE Bars DROP license;



40

Views

• A view is a “virtual table” = a relation defined in terms of the 
contents of other tables and views.
• V= viewquery (R1,R2,…,RN)

• Declare by:

CREATE VIEW <name> AS <query>;



41

Example: View Definition

• CanDrink(drinker, beer) is a view “containing” the drinker-beer 
pairs such that the drinker frequents at least one bar that 
serves the beer:

CREATE VIEW CanDrink AS

SELECT drinker, beer

FROM Frequents, Sells

WHERE Frequents.bar = Sells.bar;



42

Example: Accessing a View

• a limited ability to modify views if it makes sense as a modification 
of one underlying base table.

• Example query:

SELECT beer FROM CanDrink

WHERE drinker = ’Sally’;



43

Query + Subquery Solution

SELECT bar

FROM Sells

WHERE beer = ’Miller’ AND

price = (SELECT price

FROM Sells

WHERE bar = ’Joe’’s Bar’

AND beer = ’Bud’);

The price at
which Joe
sells Bud



44

The IN Operator

▪ <tuple> IN <relation> is true if and only if the tuple is a member of the 
relation.
▪ <tuple> NOT IN <relation> means the opposite.

▪ IN-expressions can appear in WHERE clauses.

▪ The <relation> is often a subquery.



45

Example

▪ From Beers(name, manf) and Likes(drinker, beer), find the name 
and manufacturer of each beer that Fred likes.

SELECT *

FROM Beers

WHERE name IN (SELECT beer

FROM Likes

WHERE drinker = ’Fred’);

The set of
beers Fred
likes



46

Constraints

• A constraint is a relationship among data elements that 
the DBMS is required to enforce.

• Several kind of constraints 
• Example: primary key constraints.



47

Most used kinds of constraints

• Keys
• Foreign-key, or referential integrity.

• Value-based constraints.
• Constrain values of a particular attribute.



48

Actions Taken

• Suppose R = Sells, S = Beers.

• An insert or update to Sells that introduces a nonexistent beer must 
be rejected.

• A deletion or update to Beers that removes a beer value found in 
some tuples of Sells can be handled in three ways (next slide).



49

Actions Taken

1. Default : Reject the modification.

2. Cascade : Make the same changes in Sells.
• Deleted beer: delete Sells tuple.

• Updated beer: change value in Sells.

3. Set NULL : Change the beer to NULL.



50

Example: Cascade

• Delete the Bud tuple from Beers:
• Then delete all tuples from Sells that have beer = ’Bud’.

• Update the Bud tuple by changing ’Bud’ to ’Budweiser’:
• Then change all Sells tuples with beer = ’Bud’ so that beer = ’Budweiser’. 



51

Example: Set NULL

• Delete the Bud tuple from Beers:
• Change all tuples of Sells that have beer = ’Bud’ to have beer = NULL.

• Update the Bud tuple by changing ’Bud’ to ’Budweiser’:
• Same change.


