UGA

Université
Grenoble Alpes

BCNF
and
Transaction

Université Grenoble Alpes
20/04/2023

Bahareh Afshinpour
bahareh.afshinpour@univ-grenoble-alpes.fr

Main reference:
A First Course in Database Systems (and associated material) by
J. Ullman and J. Widom, Prentice-Hall

Example

e IsRinthe 3NF?
R(A,B,C,D,E,F) FD={AB->CDEF, BD->F}

ABZDEF* ={A,B,C,D,E,F}

AB*={A,B,C,D,E,F} AB is a super key. Check out candidate key : A*={A} B*={B}
AB is a candidate key so prime={A,B}

To check out if more candidate key exist : see right side and find prime attribute
No more candidate key : so candidate key={AB}, Prime={A,B} Non-Prime={C,D,E,F}

s Non prime attribute = Non prime attribute

— AB->CDEF prime->non-prime Ris not in 3NF
FD=1AB->CDEF, BD->F
{ C ! BD->F B is prime, D is non-prime.BD is Non-prime Non-prime-> Non-prime

BCNF(Boyce-Codd Normal Form)

* It is strong version of 3NF.

The relation is in BCNF:
- Itisin 3NF
- For each non-trivial functional dependency
The left hand side of dependency must be a Supekey (X->Y)

Example
* R(A,B,C) FD={A->B, B->C, C->A}

First find out the candidate key:
ABC*={A,B,C} we have all the relation so it is a super key

We start to discard as many attribute that we can since a candidate key is a minimal super key.

ABL*={A,B,C) A+={A,B,C} A has no proper subset. If no proper subset is possible,
then there is no chance to have superkey CK= yes, Prime attribute={A}

More candidate key ??? Check the right side of the FD.
If you can find the prime attribute we have more candidate key

C->A so here we have more candidate key

Exam ple R(A,B,C) FD={A->B, B->C, C->A}

C->A so here we have more candidate key

CK=A , replace A with C. Is C candidate key?? We have to check.
C*={C,A,B} and C has no proper subset. CK=yes

Prime attributes={A,C}

see right side. We have B->C . So we replace C by B.

Prime attributes={A,C,B}

See the left side:

A->B

B->C

C->A

All the left side are candidate key. Definitely they are super key. So

This relation is in the BCNF

Find the highest normal form in R

* R(A,B,C,D,E) FD={A->BCDE, BC->ACE, D->E}

Transaction

Transaction

* Transaction is a group or set of tasks into a single execution unit.

* Each transaction begins with a specific task and ends when all the tasks

in the group successfully complete.

* |f any of tasks fails the transactions fails.

ne effects of all the SQL statements in a transaction can be either

o T
d

d

| committed (applied to the database) or

| rolled back (undone from the database).

*Decrement the savings account
Increment the checking account
*Record the transaction in the transaction journal

Transaction Begins

DATE saving ccounts
SET halanc

g = balance — 500
ERE account = 320%9;

Decrement Savings Account

—— Increment Checking Account

]
('ziournal seq. NEXTVAL, °1B*
309, 3208, 500);

Fecord in Transaction Joumal

End Transaction

Transaction Ends

Transaction

Unit of works

For example

In this unit of work, there could be multiple changes on
multiple different rows in different tables
that occur all that once.

Insert Into Tablel
Update Table 2

An important trait (property) of a transaction is the fact that these
two things must either succeed or fail together as a unit
Therefore, a transactions has only two results : - success -Failure

A transaction is a
logical, atomic unit of
work that contains one
or more SQL
statements.

Example 6.41: Let us picture another common sort of database: a bank’s
account records. We can represent the situation by a relation

Accounts(acctNo, balance)

Consider the operation of transferring 8100 from the account numbered 123
to the account 456. We might first check whether there is at least $100 in
account 123, and if so, we execute the following two steps:

1. Add $100 to account 456 by the SQL update statement:

UPDATE Accounts
SET balance = balance + 100
WHERE acctNo = 456;

2. Subtract $100 from account 123 by the SQL update statement:

Now, consider what happens if there is a failure after Step (1) but before
UPDATE Accounts Step (2). Perhaps the computer fails. or the network connecting the database to
SET balance = balance - 100 the processor that is actually performing the transfer fails. Then the database
WHERE acctNo = 123: is left in a state where money has been transferred into the second account, but
the money has not been taken out of the first account. The bank has in effect

given away the amount of money that was to be transferred. O

* When using the generic SQL interface, each statement is a transaction
by itself.

e Also, SQL allows the programmer to group several statement into a
single transaction.

* The SQL command START TRANSACTION is used to mark the
beginning of the transaction.

* There are two ways to end a transaction:
= Using COMMIT
= Using ROLLBACK

Example

We have two different users.

SQL> select * from department;

DEPTID DEPTNAME

MTech
Btech
MTechCS

7 rows selected.

SQL> select * fromgSystem.department;

DEPTID DEPTNAME

MTech
Btech
MTechCS

7 rows selected.

Userl(system) want to add one new tuple in the department

Example

SQL> insert into department values(90, '‘MTechIT'); If we proceed in the sys terminal, and check the department

1 row created.

SQL> select * from system.department;

SQL> select * from department;

DEPTID DEPTNAME
DEPTID DEPTNAME

MTech
Btech

MTech MTechCS

Btech
MTechCS
MTechIT

rows selected.

8 rows selected. We can not see any changes in the table

The changes must be saved otherwise it is discarded

When any user is updating any changes, only the user itself can see the changes without commit or rollback. No
other user can access or view the updates, as it is not permanently saved by the user who performed them.

Example

SQL> select * from department;

SQL> select * from system.department;

DEPTID DEPTNAME DEPTID DEPTNAME

MTech
Btech
MTechCS
MTechIT

MTech
Btech
MTechCS
MTechIT

8 rows selected. B rows selected.

SQL> commit;

ommit complete.

ROLLBACK

SQL> delete from department;

8 rows deleted.

SQL> select * from department;
no rows selected

SQL> rollback;

Rollback complete.

SQL> select * from department;

DEPTID DEPTNAME

MTech
Btech
MTechCS
MTechIT

8 rows selected.

* Without Commit or Rollback, the permanent update is not possible.

e But if the user changes or updates sth and disconnects from the
database properly, commits occur.

If user disconnects from the database after some changes auto commits occurs.

Transaction

- START TRANSACTION Qr BEGIN start a new transaction.

«COMMIT commits the current transaction, making its changes permanent.
*ROLLBACK rolls back the current transaction, canceling its changes.
-SET autocommit disables or enables the default autocommit mode for the current session.

——Begin the transaction

SET TEANSACTION EREAD WEITE:; . . .
SET TRANSACTION marks the beginning of a transaction.

--Create the new project Any changes you make to your data following the

THSERT INTO project beginning of a transaction are not made permanent

SELECT 1007, project name, project budget FROM project) .
until you issue a COMMIT.

WHERE project id = 1002;

-—Point the time log rows in project hours to the new project number
UPDATE project hours
SET project id = 1007

WHERE project_id = 1002;

——-Delete the original project record

DELETE FROM project Tip

WHERE project id=1002; Using SET TRANSACTION to begin a transaction is optional. A new transaction begins implicitly with the first DML statement that you
execute after you make a database connection or with the first DML statement that you execute following a COMMIT or a ROLLBACK (or

any DDL statement such as TRUNCATE). You need to use SET TRANSACTION only when you want transaction attributes such as READ ONLY

COMMIT; that are not the default.

read/write transaction : Such a transaction is the default, and it allows you to issue

statements such as UPDATE and DELETE.
You can also create read-only transactions:

If we tell the SQL execution system that our current transaction is read-
ondy, that is, it will never change the database, then it is quite possible that the
SQL system will be able to take advantage of that knowledge. Generally it will
be possible for many read-only transactions accessing the same data to run in
parallel, while they would not be allowed to run in parallel with a transaction

that wrote the same data.
We tell the SQL system that the next transaction is read-only by:

SET TRANSACTION READ ONLY;

This statement must be executed before the transaction begins.

ACID Transactions

A DBMS is expected to support “ACID transactions,” processes that

are:
. All actions of a transaction are atomic and either they are all
performed or none of the actions are performed.
: Each transaction, when run alone, must preserve the

consistency of the database.

: Each transaction is isolated (protected) from the effects of other
concurrently running transactions.

. Effects of a process do not get lost if the system crashes. once a

transaction commits, the data should persist in the database even if the
system crashes before the data is written to non-volatile storage.

19

Isolation Levels

* SQL defines four isolation levels = choices about what interactions
are allowed by transactions that execute at about the same time.

* How a DBMS implements these isolation levels is highly complex, and
a typical DBMS provides its own options.

20

SQL

Updates

* To change certain attributes in certain tuples of a relation:
UPDATE <relation>
SET <list of attribute assignments>
WHERE <condition on tuples>;

Change drinker Fred’s phone number to 555-1212:
UPDATE Drinkers
SET phone = "555-1212"
WHERE name = ’"Fred’;

23

Example: Update Several Tuples

* Make $4 the maximum price for beer:
UPDATE Sells
SET price = 4.00
WHERE price > 4.00;

24

Adding Attributes

* We may add a new attribute (“column”) to a relation
schema by:

ALTER TABLE <name> ADD
<attribute declaration>;
* Example:
ALTER TABLE Bars ADD phone CHAR(16)

25

Deleting Attributes

* Remove an attribute from a relation schema by:
ALTER TABLE <name>
DROP <attribute>;

* Example: we don’t really need the license attribute
for bars:

ALTER TABLE Bars DROP license;

26

Views

e Aview is a “virtual table” = a relation defined in terms of the
contents of other tables and views.

e V=viewquery (R1,R2,...,RN)
* Declare by:
CREATE VIEW <name> AS <query>;

27

Example: View Definition

* CanDrink(drinker, beer) is a view “containing” the drinker-beer
pairs such that the drinker frequents at least one bar that
serves the beer:

CREATE VIEW CanDrink AS
SELECT drinker, beer
FROM Frequents, Sells
WHERE Frequents.bar = Sells.bar;

Example: Accessing a View

* a limited ability to modify views if it makes sense as a modification
of one underlying base table.

* Example query:
SELECT beer FROM CanDrink
WHERE drinker = "Sally’;

29

Query + Subquery Solution

SELECT bar
FROM Sells
WHERE beer ="Miller’ AND

price =

The price at
which Joe /

sells Bud

30

The IN Operator

= <tuple> IN <relation> is true if and only if the tuple is a member of the
relation.

= <tuple> NOT IN <relation> means the opposite.
" IN-expressions can appear in WHERE clauses.
" The <relation> is often a subquery.

31

Example

" From Beers(name, manf) and Likes(drinker, beer), find the name

and manufacturer of each beer that Fred likes.

SELECT *
FROM Beers

WHERE name IN

The set of
beers Fred /

likes

(SELECT beer
FROM Likes
WHERE drinker = "Fred’);

32

The Operator ANY

* x = ANY(<relation>) is a boolean condition true if x equals at least
one tuple in the relation.

e Similarly, = can be replaced by any of the comparison operators.

 Example: x >= ANY(<relation>) means x is not the smallest tuple in
the relation.

* Note tuples must have one component only.

33

The Operator ALL

e Similarly, x <> ALL(<relation>) is true if and only if for every tuple t in
the relation, x is not equal to t.

 That is, x is not a member of the relation.
* The <> can be replaced by any comparison operator.

 Example: x >= ALL(<relation>) means there is no tuple larger than x
in the relation.

34

Example

* From Sells(bar, beer, price), find the beer(s) sold for the highest price.

SELECT beer
FROM Sells price from the outer

Sells must not be
WHERE price >= ALL(less than any price.
SELECT price
FROM Sells);

35

