Chapter 4

High-Level Database
Models

Université Grenoble Alpes
23/02/2023

Bahareh Afshinpour
bahareh.afshinpour@univ-grenoble-alpes.fr

U C_A Main reference:
A A First Course in Database Systems (and associated material) by

Université : -
Grenoble Alpes J. Ullman and J. Widom, Prentice-Hall

Design approach

Real world

1. Perceiving the real world
Graphical models &

External schemas Natual Language
(UML, FlowCharts,...)

2. Drawing up the conceptual schema

Graphical models
Conceptual Schema (UML,

Entity-Association)
3. Designing the DB schema (logical) @

4. Refining the DB schema (logical) C/ Text Models

(Object, Relational)

5. Drawing-up the physical schema Physical Schema Platform Models
(Java, C++, SQL)

Recall

* In practice, it is often easier to start with a higher-level model and
then convert the design to the relational model.

High-Level Relational Relational
DESlgl"l Schema DEMS

The database modeling and implementation process

* There are several options for the notation in which the design is
expressed.
* Entity-relationship diagram
 UML (class diagram)
* ODL(object description language)

ER Diagrams, Naming Conventions, an

Symbol

(min, max)

Entity

Weak Entity

Relationship

Indentifying Relationship

Attribute

Key Attribute

Multivalued Attribute

Compaosite Attribute

Derived Attribute

Total Participation of E; in R

Cardinality Ratio 1: N for E;:E; in R

Structural Constraint (min, max)
on Participation of Ein R

Summary of the notation

d Design Issues

Exercise 4.1.9: Design a database suitable for a university registrar. This
database should include information about students, departments, professors,
courses, which students are enrolled in which courses, which professors are
teaching which courses, student grades, TA’s for a course (TA’s are students),
which courses a department offers, and any other information you deem appro-
priate. Note that this question is more free-form than the questions above, and
you necd to make some decisions about multiplicities of relationships, appro-
priate types, and even what information needs to be represented.

COURSE

M N
fIAGE:.
N

1
-~
Teaches L
M

%

LECTURER _ID
M

LECTURER Teaches

SUBJECTS

ECTURER ID) (LECTURER NAME) { COURSE_ID

!

SUBJECT_ID

Representing Keys in the E/R Model

ovi

= -~

4.1.12 Exercises for Section 4.1

Exercise 4.1.1: Design a database for a bank, including information about
customers and their accounts. Information about a customer includes their
name, address, phone, and Social Security number. Accounts have numbers,
types (e.g., savings, checking) and balances. Also record the customer(s) who
own an account. Draw the E/R diagram for this database. Be sure to include
arrows where appropriate, to indicate the multiplicity of a relationship.

Exercise 4.1.2: Modify your solution to Exercise 4.1.1 as follows:

Exercise 4.1.3: Give an E/R diagram for a database recording information
about teams, players, and their fans, including;:

1. For each team, its name, its players, its team captain (one of its players),
and the colors of its uniform:.

2. For each player, his/her name.

3. For each fan, his/her name, favorite teams, favorite players, and favorite
color.

Remember that a set of colors is not a suitable attribute type for teams. How
can you get around this restriction?

Exercise 4.1.5: Modify Exercise 4.1.3 to record for each player the history of
teams on which they have played, including the start date and ending date (if
they were traded) for each such team.

Weak entity

 Weak Entities

* A weak entity is an entity that

* |s existence-dependent and
* Has a primary key that is partially or totally derived from the parent entity in the relationship.

* The existence of a weak entity is indicated by a double rectangle.

* The weak entity inherits all or part of its primary key from its strong counterpart.

1 M
EMPLOYEE —‘—M) DEPENDENT Weak Entity
N 1,1 —
EMP_NUM 10 i EMP_NUM Customer
EMP_LNAME EMP_NUM
EMP_FNAME DEP_FNAME
EMP_INITIAL DEP_DOB

EMP_DOB

Strong Entity
10

Example 4.20: A movie studio might have several film crews. The crews
might be designated by a given studio as crew 1, crew 2, and so on. However,
other studios might use the same designations for crews, so the attribute number
is not a key for crews. Rather, to name a crew uniquely, we need to give
both the name of the studio to which it belongs and the number of the crew.
The situation is suggested by Fig. 4.20. The double-rectangle indicates a weak
entity set, and the double-diamond indicates a many-one relationship that helps
provide the key for the weak entity set. The notation will be explained further
in Section 4.4.3. The key for weak entity set Crews is its own number attribute
and the name attribute of the unique studio to which the crew is related by the
many-one Unit-of relationship. O

CRumber S CerewChief (rame ™ Caddr)
=== =7

Figure 4.20: A weak entity set for crews, and its connections

Studios

LN

4.4.3 Weak Entity Set Notation

We shall adopt the following conventions to indicate that an entity set is weak
and to declare its key attributes.

1. If an entity set is weak, it will be shown as a rectangle with a double
border. Examples of this convention are Crews in Fig. 4.20 and Contracts
in Fig. 4.22.

2. Its supporting many-one relationships will be shown as diamonds with a
double border. Examples of this convention are Unit-of in Fig. 4.20 and
all three relationships in Fig. 4.22.

3. If an entity set supplies any attributes for its own key, then those at-
tributes will be underlined. An example is in Fig. 4.20, where the number
of a crew participates in its own key, although it is not the complete key
for Crews.

We can summarize these conventions with the following rule:

¢ Whenever we use an entity set £ with a double border, it is weak, The key
for E is whatever attributes of E are underlined plus the key attributes of
those entity sets to which E is connected by many-one relationships with
a double border.

From E/R diagrams to Relational designs

1.

Turn each entity set into a relation with the same set of attributes

Stars

name

address

Carrie Fisher
Mark Hamill
Harrison Ford

123 Maple St.,

Heollywood

456 0ak Rd., Brentwood

789 Palm Dr.,

Beverly Hills

13

From E/R diagrams to Relational designs

3. Strong entity set with composite attributes o
* In the relational model, a strong entity set with

* During conversion, only the simple attributes of composite at

tributes are considered, not the composite attribute itself / ‘

Roll no | First_ name | Last name | House no | Street | City

Schema : Student (Roll no , First_name , Last_name , House_no , Street , City)

https://www.gatevidyalay.com/er-diagrams-to-tables/

From E/R diagrams to Relational designs

* 4. For Strong Entity Set With Multi-Valued Attributes o
In relational model, a strong entity set with any number of

multivalued attributes will require two tables.

Student

* All simple attributes will be stored in a single table with a
primary key. ‘

* Another table will contain the primary key and all attributes with

multiple values. Roll no | City

Roll no | Mohile no

15

Combining relations : one to many

Because R is many-one, all these attributes are functionally determined by the key for E,
and we can combine them into one relation with a schema consisting of:
‘ -No new table for relation
1. All attributes of E. - We modify many side(1 to many) table

- We add
- Attribute from relation(contracts)

- Primary key of 1 side

2. The key attributes of F'.

3. Any attributes belonging to relationship K.

Add to the relation

Movies: @

title year | length | genre studioName | s5jary T
Star Wars 1977 | 124 sciFi | Fox " ey @
Gone With the Wind { 1939 | 239 drama | MGM i i

Wayne’s World 1992 | 95 comedy | Paramount (ergt) - G 1

Studios

Here, two tables will be required : -studios - Movies iy

Combining relations : one to one

(o Cmn >
1 1

Student Birth_Certificate
'/ i

Mother's_Name
Student_Contact Registered_Date

Here, two tables will be required. Either combine ‘R’ with ‘A’ or ‘B’

Way-01:
1.student (al, a2,a3, .., bl)

2.Birth (bL, b2, b3,...) There's no need for a new table. Only the primary key of

one entity should be added to another

Way-02:
1.student (al, a2, a3,)

2.Birth (a1, b1, b2, b3, ...)

17

Combining relations : many to many

* Here, three tables will be required:

v’ Student(al,a2,a3,....)
v Course(cl,c2,c3,...)

Create a new table for the relation

v Enrolled(al,cl,...)

Student

mn

Course

18

Weak entity

Weak entity set always appears in association with identifying relationship with total participation constraint.

* Create a new table
e Put the owner’s primary key in this table
 Combination of the owner and weak entity ‘s primary key is new primary key in this table

Here, two tables will be required-

1.A(al,a2)
2.BR(al,bl,b2)

19

Foreign key (Also known as FK)

This concept is used in relational databases for an attribute that is
the primary key of another table and is used to create a link between that table

and the table in which it also appears as an attribute.

e I TR

D intager(10)
= Name varchar(255) [{] wmm | pOT Hello World Tech. 534-55-7478
Contact varchari255) [}f]

m-02 ABC Technologies 283-92-8511

T

|

|

|

|

:
Product

C)
: |
D integer(10) PDT-0001 | M-01 1 Tiger T7 Bluetooth Headphones
™ ManufactureriD integer(10) mm I
[Z| Mame varchar(255)] PDT-0002 : M-01 | DD-027 In-Ear Headphones, Black
|
PDT-0003 : M-02 I M. 1022 Deep Bass Earbuds

https://www.visual-paradigm.com/guide/data-modeling/what-is-entity-relationship-diagram/

A foreign key is a reference to a
primary key in a table.

Note that foreign keys need not

be unique. Multiple records can
share the same values.

20

Unified modeling diagram

 Modeling: Describing a software system at a high level of abstraction
* UML offers much the same capabilities as the E/R model, with the exception of multiway relationships.

* Here you can see different terminology that is used by E/R and UML.

UML | E/R Model
Class Entity set
Association Binary relationship
Association Class | Attributes on a relationship
Subclass Isa hierarchy
Aggregation Many-one relationship
Composition Many-one relationship

with referential integrity

Figure 4.34: Comparison between UML and E/R terminology

21

Class diagram

» A class diagram depicts classes and their relationships

* Provide a conceptual model of the system in terms of entities and their relationships

Order

®dateRecived : Date
®isPrepaid : Boolean
&number : String

price : Money

Customer

Sdispatch()
®close()

&narne : String
Byaddress : String

SereditRating)

}

Corprate Customer

Personal Customer

®contactName : String
R creditRating : String
S creditLimit : Double

R creditCard# : Long Integer

Sremind()
®hillForonth()

22

UML Classes

Sets of objects, with attributes (state) and methods (behavior).

Each class is represented by a rectangle subdivided into three

compartments Movies
> Name title PK
> Attributes fmeK
. eng
» Operations genre

Attributes have types.

<place for methods>

PK indicates an attribute in the object’s primary key (optional).

Methods have declarations: arguments (if any) and return type. Figure 4.35: The Movies class in UML

Example 4.34: We might have added an instance method lengthInHours().
The UML specification doesn’t tell anything more about a method than the
types of any arguments and the type of its return-value. Perhaps this method
returns length/60.0, but we cannot know from the design. O

23

Associations

* A binary relationship between classes is called an association.
* No multiway relationship (it is broken into binary relationships)
* The association is a set of pairs of objects, one from each of the classes it connects.

Studios

name PK
address

0.*

Owns 0..1 Movies
title PK
year PK
length
genre

Stars
name PK
address

Figure 4.36: Movies, stars, and studios in UML

e If there is no label at all at an end of an association edge, then the label
is taken to be 1..1, i.e., “exactly one.”

Example

Example 4.36: In Fig. 4.36 we see 0..x at the Movies end of both associations.
That says that a star appears in zero Or more movies, and a studio owns zero
or more movies; i.e., there is no constraint for either. There is also a (.. at
the Stars end of association Stars-in, telling us that a movie has any number
of stars. However, the label on the Studios end of association Owns is 0..1,
which means either 0 or 1 studio. That is, a given movie can either be owned
by one studio, or not be owned by any studio in the database. Notice that this
constraint is exactly what is said by the pointed arrow entering Studios in the
a

E/R diagram of Fig. 4.17.

Movies

title PK
year PK
length
genre

1.

1

Studios

Owns

name PK
address

l..

1

0..1

Presidents

Runs

cert# PK
name
address

25

Self- Associations

An association can have both ends at the same class

Association - Self

Class Role
|
I : A Company has Employees.
Worker v v A single manager is responsible for up to 10 workers.
* Person 1 employer Company
Self Association =— —» employee .
Manager 1
0..1 Employee
Manages t manager
I Responsible 1o | worker
Multiplicity for :
\4

26

4.7.5 Association Classes

We can attach attributes to an association in much the way we did in the E/R
model, in Section 4.1.9.5 In UML, we create a new class, called an association
class, and attach it to the middle of the association. The association class
has its own name, but its attributes may be thought of as attributes of the
association to which it attaches.

Movies
Stars 0.* Stars—in o0.* | tite PK
name PK year PK
address : length
Compensation genre
salary

restduals

Subclasses in UML

* There are two kinds of Relationships

» Generalization (parent-child relationship)
» Association (student enrolls in the course)

e Associations can be further classified as
» Aggregation
» Composition

28

Subclasses in UML

e Subclasses are presented by rectangles, like any class.

* We assume a sub-class inherits the properties(attributes and
associations) from its superclass.

Bike

Car

+wheels
—gearShitt21

+wheels
~horsepower

+getSpead()
+changeBaraback()

+getSpeed()

Vehicle

Bike

#wheels
—gearShift21

+wheels
=horsepower

+oeiSpeead()
+changeBareback()

+getsSpeed()

29

Subclasses in UML

Person

-name: String
-age: String

+addlLegoStructure(ls: LegoStructure)

A horizontal line, feeding into the arrow

Super-class

{disjoint, Complete}

Person

Name
Phone Number
Email Address

Purchase Parking Pass

i

Student

Professor

- Child

=

Adult

Student Number

Salary

Average Mark

+buildHouse(lego: LegaSet)

+buildDragon{lego: LegoSet)

Sub-class may have its own attributes and additional, association

Sub-class

Is Eligible To Enroll
Get Seminars Taken

30

Name — Order

-dateReceived Multiplicity: mandatory

-isPrepaid *
-number :String
-price : Money

Attributes
—_

+dispatch()

Operations — o Association

{if Order.customer.creditRating is
"poor", then Order.isPrepaid must
be true }

Customer

-name
-address

+creditRating() : String()

Corporate Customer

Generalization

-contactName

Constraint

-creditRating

-creditLimit

Personal Customer
-creditCard#

Multiplicity:
Many value

(inside braces{}}

Multiplicity:

optional

—_—

+remind()
+billForMonth(Integer)

0..

*

Employee

OrderLine

-quantity: Integer
-price: Money
-isSatisfied: Boolean

1

31

Aggregations

e expresses a relationship among instances
of related classes. It is a specific kind of
Container-Containee relationship.

Container Class

Class C

AGGREGATION §>

Class E,

Class E,

N\

J

Y

Containee Classes

Example

Bag

%

Apples

Milk

[From Dr.David A. Workman]

32

Composition

However, it is also possible in UML,

Stronger relationSh I p to use composition as we used supporting
One can not exist without the other relationships for weak entity sets in the E/R

model.
If the school folds, students live on
but the departments go away with the school
School @ Department Chesshoard Class Square Class
~ 7 1 1.%
1. Y | 64

Student

The McGraw-Hill Companies, 2005 Figure 16.7

Model aggregation or composition? When in doubt, use association (just a simple line)

33

Movies

title PK
year PK
length
genre

1

Studios 1.1

Owns

0..1

Presidents

name PK
address

Runs

Movies

titte PK
year PK
length
genre

cert# PK
name
address

Studios

O name PK
address

0..1

MovieExecs

cert# PK
name
address
networth

Presidents

¢

Figure 4.41: An aggregation from Movies to Studios and a composition from
Presidents to Studios

A composition is similar to an association, but the label at the diamond
end must be 1..1. That is, every object at the opposite end from the diamond
must be connected to exactly one object at the diamond end. Compositions

are distinguished by making the diamond be solid black.

34

From UML Diagram to Relations

 Class to relations
* For each class, create a relation whose name is the name of the class
 And whose attributes are the attributes of the class.

* Associations to Relations
* For each association, create a relation with the name of that association

* The attributes of the relation are the key attributes of the two connected
classes (Rename if necessary).

* If there is an association class attached to the association, include the
attributes of the association class among the attributes of the relation.

Example 4.42: Consider the UML diagram of Fig. 4.36. For the three classes
we create relations:

Movies(title, year, length genre)
Stars(name, address)
Studios(name, address)

For the two associations, we create relations
Stars-In(movieTitle, movieYear, starName) Stars-In{movieTitle, movieYear, starName, salary, residuals)
Owns{movieTitle, movieYear, studioName)

35

Examples

Crews 0.* 1.1 Studios
number PK PK name PK
crewChief address

* Box labeled “PK” indicates that this composition provides part of the key for crews.

* The relation for class crews includes not only its own attribute number, but the key
for class at the end of the composition, which is studios(name).

The relations for Example 4.44 are thus:

Studios(name, address)
Crews (number, crewChief, studioName)

As before, we renamed the #ttribute name of Studios in the Crews relation, [ur
clarity. 36

Menu

menulD int
menultem

Customer
name string Menultem
contactNumber it

Waiter Chef customerlD int

menultemiD ind Receptionist
title string

description sfring

price int createReservation()

createOvder() takeOrder() gg?&()t()

lastVisited()
cancelOrder()
modidyOrder()

updatePrice()

Ovder

orderiD nt
status OrderStatus

addMenulterny)
removeMenultem()

belliD) it
customerD ind

paymentType string

pay()
cancelPayment()

Reservation

reservationlD int
reservation Time int
numberOfPeope it

cancelReservation()
changeReservation Time()

for

Table

tablelD int
status TableStatus
maxCapacity it

addReservabon()

37

Converting sub-classes

Three approaches to convert entity sub-classes in relations

. Subclass relations contain superclass key + specialized attrs. (“UML”

style)
EX. S(K,A) S1(K,B), S2(K,C)
. Subclass relations contain all attributes (“O0” Style)
EX. S(K,A) S1(K,A, B), S2(K,A,C)
. One relation containing all superclass + subclass attrs.
EX. S(K,A, B, C)

Pros/cons depend on:
 the frequent queries...
 data characteristics

* sub-classes type (complete/partial; disjoint/overlapping)

K{pk}

S1

S2

38

Converting entity sub-classes: “UML” style

. Create a relation for the “root” class (as usual)
 It's key k is the identifier of the class

. For each sub-class create a relation with the
key attributes (k) + its own specific attributes

S(K,A)

S1(K,B)

52(K,C)

K{pk}

S1

S2

39

Converting entity sub-types: “O0” style

 Create a relation for each class and for each sub-
class with all its attributes (own+inherited)
* The key is based on the identifier of the “root” entity
S(K,A) S1(K,A, B) S2(K,A,C)

K{pk}

S1

S2

40

Converting sub-classes: attributes and null values

 Create one single relation with all
the attributes of the class hierarchy
S(K,A, B, C)

e |nstances have null in attributes that
don’t belong to them

 Specific attributes can be used to
reflect sub-classes

A

K{pk}

S1

S2

Object Definition Language

 ODL is as a text-based language for specifying the structure of
databases in object-oriented terms.

 Like UML, the class is the central concept in ODL.

A declaration of a class in ODL, in its simplest form, is:

class <name> {
<list of properties>

|

42

Attributes in ODL

* In ODL, attributes need not be of simple types such as integers

* An attribute is represented in the declaration for its class by the
keyword attribute, the type, and the name of attribute.

class Movie {
attribute string title;
attribute integer year;
attribute integer length;
attribute enum Genres
{drama, comedy, sciFi, teenl} genre;

};

Here genres is enumerated type (list of symbolic constants).
The four values that genre is allowed to take are drama, comedy,

43

Attributes in ODL

e Attribute Address has a type that is a record structure

* The name of this structure is Addr. It consists of two fields: street and
city

class Star {
attribute string name;
attribute Struct Addr
{string street, string city} address;

44

Relationships in ODL

* An ODL relationship is declared inside a class declaration by the
keyword relationship, a type, and the name of the relationship.

* For example, the best way to represent the connection between the
Movie and Star classes is with a relationship.

e We add this line in the declaration of class Movie.

relationship Set<Star> stars;

45

Multiplicity of relationships

* If we have many-many relationships between classes Cand D
* Set<D>, Set <C>

* If the relationship is many-one from C to D,

* The type of the relationship in Cis just D
* while the type of the relationship in D is set<C>.

* If the relationship is one-one,
* the type of the relationship in Cis just D
e and in D it is just C.

46

1) class Movie {

2) attribute string title;
3) attribute integer year;
4) attribute integer length;
5) attribute enum Genres
{drama, comedy, sciFi, teen} genre;
6) relationship Set<Star> stars Many-many relationships between Star and movie
inverse Star::starredln;
7) relationship Studio ownedBy
inverse Studio::owns;
}; movie
8) class Star {
9) attribute string name; stars
10) attribute Struct Addr starreln
{string street, string city} address;
11) relationship Set<Movie> starredIn Star
inverse Movie::stars;
};
12) class Studio {
13) attribute string name;
14) attribute Star::Addr address; Since the type of OwnedBy is Studio, while the type of owns
15) relationship Set<Movie> owns is Set<Movie>, we see that this pair od inverse relationship

inverse Movie::ownedBy; o any_one from Movie to studio.

};

47

Declaring Keys in ODL

* The declaration of a key or keys for a class is optional.
* ODL assumes that all objects have an object-identity

class Movie (key (title, year)) {

48

Subclasses in ODL

* Class C to be a subclass of another class D
* Follow the name Cin its declaration with the keyword extends and the name D

* Then class C inherits all the properties of D and may have additional properties
of its own.

class MurderMystery extends Movie {
attribute string weapomn;

};

49

From ODL Design to relational Design

* Page 193-196

